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ABSTRACT

This research investigates the dissipativity and performance of semiactive systems with

smart dampers. It is known that the dissipative nature of smart dampers has an important effect

on the performance of semiactive systems; yet, frequently applied semiactive control strategies

do not consider dissipativity in the design. To exploit the effects of dissipativity on the semi-

active performance, two dissipativity indices are proposed and, then, used in the analysis and

control design of structures with smart dampers. Two representative cases are considered: simple

two-degree-of-freedom systems and more complex, realistic structures that can be encountered

in a practical structural control problem.

For the 2-DOF structures, a dissipativity index is utilized to modify a standard linear qua-

dratic regulator using linear matrix inequality techniques to achieve better semiactive perfor-

mance. The first example is a shear building with an ideal damper attached in the first story. It is

shown that the proposed control theory can be used not only to identify controllers that are suit-

able for a smart damper but also to improve the control force dissipativity and, thereby, the per-

formance of the semiactive structure. In the second example, a highway bridge with a realistic

magnetorheological damper model is analyzed; it is shown that smart dampers may further

reduce the dissipativity of the primary controllers that already had low dissipativity levels, result-

ing in poor semiactive performance.

A recently-introduced three-dimensional base isolated benchmark building is used to investi-

gate the benefits of a dissipativity analysis for a real-life problem. First, dissipativity perfor-

mance-relations for the benchmark structure with a linear isolation layer are examined. A

dissipativity analysis shows useful information about which controllers are more suitable for
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semiactive application. In another example, an equivalent linearization technique is applied to

implement a linear control strategy for the nonlinear structure, and a dissipativity analysis is

shown to be an essential tool for faster solutions to this sophisticated problem, where a conven-

tional semiactive design may be very impractical, time consuming and computationally inten-

sive. In summary, a computationaly inexpensive dissipativity analysis as proposed herein can

provide significant savings of time and computational resources in the semiactive control design

process.



1

CHAPTER 1

INTRODUCTION

In the process of designing a civil structure, a structural engineer must address various safety and

serviceability issues. In general, a structure should be safe enough to survive “most expected

loads” that it will face during its lifetime. Moreover, it should be serviceable, i.e., should perform

satisfactorily so that it will not cause discomfort to the users of the structure. For example, con-

sider a 100-story high-rise building: The structure must not fail under “most expected” loads

including loads due to natural events such as earthquakes and wind and/or man-made loads such

as heavy equipment used in the structure. Furthermore, it should be designed so that the vibration

of the structure is small enough to not cause any discomfort to the occupants. In fact, if this struc-

ture is designed only for safety, it may not be serviceable; i.e., although the structure will not fail,

the magnitude of the vibration due to the everyday wind may be very large for an occupant, mak-

ing the person feel unsafe.

In practical structural engineering, a standard design for safety and serviceability makes use

of structural codes. Structural codes identify the external loads on a structure, provide methods to

estimate the magnitudes of these loads and resistance of the structure against these loads. Using

these well-defined procedures, a structural engineer estimates the loads that each structural mem-

ber will be resisting and selects a proper dimension and characteristics for each member (Figure

1.1). The methods provided in structural codes are products of extensive research and statistical

studies of decades and lessons learned from past structural failures. For example, the fundamen-

tal design philosophy of the codes used before 1960s were very different than their current ver-

sions in use. During the late 1960s and 1970s, various natural disasters occurred in the world that
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caused extensive human casualties and economic damage, including earthquakes in San

Fernando, California, in 1971, Managua, Nicaragua, in 1972, Miyagi-ken-oki, Japan, in 1978,

the roof failure of the Hartford Civic Arena in Hartford, Connecticut, due to extreme snow load

in 1978, Hurricane Camille on the Gulf Coast in 1969 and Hurricane Cyclone Tracy that devas-

tated Darwin, Australia, in 1974. Due to these and other major disasters, the structural engineer-

ing community had to reevaluate the design procedures and philosophy of the design codes.

Ground Acceleration

Natural Loads

Man-made Loads

Natural Loads

Members are
designed to 
resists external 
forces

Figure 1.1 A schematic representation of a conventional structure and its design
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Another interesting side effect of the natural disasters mentioned above — especially earth-

quakes — was the investigation of new innovative structural design approaches to improve the

safety of structures under extreme natural loads. Most of these ideas were already known in the

conceptual sense, yet they had not yet been investigated and implemented scientifically and prac-

tically. One of the ideas for earthquake resistant design was to dissipate the energy, which is

input by the earthquake, through special devices installed throughout the structure (Kelly et al.

1972). In a conventional design, energy is dissipated by the structural members. Installation of

energy dissipation devices would reduce structural damage and improve the safety of the overall

structure. Another idea proposed the concept of feedback control, where the structural responses

are measured by sensors and fed into a computer that controls some type of actuators or similar

devices placed throughout the structure (Yao 1972). Control of these devices is based on a con-

trol law and aims to modify the structural responses to address not only the safety but also ser-

viceability issues. During the past three decades, these ideas have been shaped by extensive

research, and various practical applications have been implemented. The study of these innova-

tive approaches is now known to be structural control.

1.1 Structural Control

The main goal of structural control applications is to achieve safety and serviceability goals,

which cannot be achieved by conventional structural design methods enforced by structural

codes, by modifying structural characteristics or responses using innovative noncontrollable or

controllable members or devices. Usually, the problems that structural control addresses are

structural vibration problems. These can be special vibration issues that appear in the dynamic

design of complex civil infrastructures such as wind induced vibration of high-rise buildings and

vibration of long span bridges due to human walking. They can also be seismic performance
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related issues of structures critical in economic and disaster management such as hospitals,

schools and highway bridges.

In general, control strategies are classified into three main categories: active, passive and

semiactive. A fourth category is hybrid control where two or more strategies are used in the same

structure. Each control strategy and technology has its own advantages and disadvantages that

are mostly determined by the nature of the problem, the complexity of the structure and the

mechanical and economic properties of the technology used. In the following, a review of these

strategies is given. 

1.1.1 Active Control 

In active control, externally powered devices such as hydraulic actuators or active tuned

mass dampers apply forces to the structure to modify the motion of the structure. The forces that

the devices apply are determined by a control law, which is generally the solution to a complex

mathematical optimization problem. The sensors on the structure feed back the responses for the

control law to estimate the optimal control force. A representation of an actively controlled struc-

ture is shown in Figure 1.2, and its feedback control diagram is shown in Figure 1.3. Active con-

trol has been mostly applied to mitigate wind-induced vibrations of high-rise buildings. One

example is the Yokohama Landmark Tower in Japan, which is shown in Figure 1.4. Also, wind-

induced vibration of large-size bridges during erection and service have been mitigated by active

control technologies. There are several state-of-the-art papers that review these applications

(Housner et al. 1997, Spencer and Sain 1997; Nishitani and Inoue 2001; Spencer and Nagaraja-

iah 2003).   

The efficiency of an active system is related to the fact that an active device can apply a force

that adds energy to the structure or a force that dissipates energy from the structure, which cannot
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be achieved by other type of control devices. Therefore, an active system is always expected to

have performance capabilities better than other strategies.  

While active systems are efficient for wind-induced vibrations, there are concerns about their

performance and robustness for earthquake loadings. These concerns are not due to the theoreti-

cal performance limitations of the control strategy or the devices used, but due to the practical

issues, which can be summarized as follows. First, most structures, especially reinforced con-

crete buildings, experience extremely nonlinear behavior under earthquake excitation. In fact, a

Ground Acceleration

Natural Loads

Man-made Loads

Natural Loads
Sensors
measure 
structural 
responses

Active 
devices apply 
forces to the 

structure

PC

Figure 1.2 A schematic representation of an actively controlled structure
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highly nonlinear behavior with high ductility and energy dissipation characteristics is more desir-

able than a linear and brittle behavior with high failure strengths in a seismic design, and this is

the fundamental philosophy behind the current seismic design codes. Nonlinear behavior of civil

structures cannot be modeled by analytic functions with an accuracy sufficient for active control

theory. In general, approximate bilinear or trilinear models, which are not suitable for practical

control theories, are utilized. Moreover, earthquake excitations have a very unpredictable ran-

dom nature and may have a particular frequency content or magnitude that will intensify the non-

linear behavior of the structure. On the contrary, there is no efficient control strategy that

guarantees good performance with a robust behavior for extremely nonlinear structures; in gen-

eral, control strategies used in practice assume that the structure controlled is linear. Hence, it is

very difficult to predict the performance and stability characteristics of an extremely nonlinear

structure controlled with an active device even if it is very well designed. 

In addition to robustness concerns, active devices require huge amounts of power to operate,

and it is rarely guaranteed that the required amount of power will be available during a severe

earthquake. To do so require expensive backup power supplies that make active control prohibi-

tively costly.

Active 
Device

Responses

Structure

Control
Law

Excitation

MeasurementsControl Force

Figure 1.3 Feedback control diagram of an active system



7

Figure 1.4 An example of actively controlled structure: Yokohama Landmark Tower 
(photos by Baris Erkus)

Active device in the top floorYokohama Landmark Tower

Schematic figure of the active device (Yamazaki et al. 1995)
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Moreover, active devices are, in general, expensive and have high maintenance costs. Instal-

lation of these devices requires special construction techniques and considerable labor time.

Also, the structure should be designed and constructed accordingly. For example, consider the

Yokohama tower in Figure 1.4. During construction of this building, the construction company

had to use cranes that are specially designed to locate the active devices to the top floor. It would

not be difficult to guess other challenges faced during the construction and overall cost of the

system for this building. Therefore, only large construction companies tend to apply active con-

trol strategies.

In an overall sense, while active control technologies do have good performance characteris-

tics, their robustness, reliability and cost characteristics limit their application to very special

engineering problems, where other control approaches and conventional structural designs can

not be utilized.

1.1.2 Passive Control 

Passive devices, which are defined as devices that do not require an external power source to

operate and that do not have controllable mechanical properties, are installed throughout the

structure to serve two main purposes: energy dissipation and isolation (Figure 1.5). In dynamical

terms, energy dissipation is achieved by converting the kinetic energy to heat and/or transferring

the energy to less important vibration modes. Isolation is decoupling a structure from ground or

from another structure to avoid the transfer of forces to the structure. From a practical point of

view, passive devices can be classified into three categories: devices that dissipate energy by

converting energy to heat, devices that transfer energy to less important modes, and devices that

serve both isolation and energy dissipation purposes. 
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Passive devices that only dissipate energy by converting kinetic energy to heat have gener-

ally nonlinear stiffness and damping characteristics. When a large amount of energy is input to

the structure, these devices dissipate energy in many ways such as damping, friction, yielding,

and other types of nonlinear deformation of materials used in the device. In a structure, where

passive devices are not installed, energy is dissipated by deformations of structural members.

Ground Acceleration

Natural Loads

Man-made Loads

Natural Loads

Passive devices 
dissipate energy

m

Tuned mass dampers 
dissipate energy in 

less important modes

Rubber bearings isolate the structure from 
the ground and dissipates energy

Figure 1.5 Examples of passive devices and their utilizations
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Passive devices reduce the deformations of the structural members and, thereby, decrease the

possibility of failure. Examples of these devices are metallic yielding dampers, friction dampers,

viscoelastic dampers and viscous fluid dampers. These devices are mostly applied for earthquake

protection of structures due to the energy characteristics of earthquakes. A representative figure

of a viscoelastic damper and its force-displacement relation is given in Figure 1.6. 

Passive devices that use less important vibration modes to dissipate energy operate on the

dynamic vibration absorber concept, which has been heavily investigated, and a vast body of lit-

erature is available on the topic (e.g., Ormondroyd and Den Hartog 1928; Den Hartog 1956).

Tuned mass dampers (Figure 1.5) and tuned sloshing dampers are examples of these passive
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Figure 1.6 A representative figure of a viscoelastic damper and its force-
deformation relation (adapted from Shen and Soong, 1995) 
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devices. In a tuned mass damper (TMD), the mass of the damper is generally on the order of 1%

of the structure mass. When the damping and stiffness of the TMD are properly designed, the

TMD can considerably reduce the vibration of the structure for a class of excitations. Vibration

absorbers are frequently used in buildings for earthquake and wind mitigation, as well as for

other structures, such as bridges, that experience human/vehicle or wind-induced vibrations (e.g.

Dallard et al. 2001; Carstairs et al. 2005). 

The third class of passive devices are rubber bearings that isolate the structure from the

ground as in isolated buildings (Figure 1.5) or isolate parts of the structure from each other as in

isolated bridges (Figure 1.7). There are various kinds of rubber bearings, each of which has dif-

ferent behavior. In common, their force-deformation relations are nonlinear hysteresis. A rubber

bearing and its representative behavior is shown in (Figure 1.8). 

There are several advantages of passive devices and passive structures. First, performance

and robustness characteristics of a passive structure can be predicted efficiently. A passive device

can easily be tested in a laboratory environment, and its mechanical properties such as force-

Rubber
Bearing

Girder

Pier

Figure 1.7 A representative figure of an isolated bridge
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deformation and force-velocity relations, thermodynamic properties, and fatigue characteristics,

can be modelled by efficient mathematical relations. Since a passive device is not a controllable

device, the overall behavior of the structure can be predicted with an accuracy that is acceptable

from a practical engineering point of view. Especially for extremely nonlinear structures, an

engineer will have a better idea about the performance and robustness characteristics of a passive

system than for an active system. This is very critical and important for a seismic design as dis-

cussed previously. Second, a passive device, by its nature, cannot inject energy into the system to

which it is attached; therefore, they are more suitable for control problems where robustness is

more important than the performance of the structure. Also, they do not require power to operate,

which makes them reliable for events, such as earthquakes, where external power may not be

available. Fourth, their initial and maintenance cost is lower than other control technologies. 

The disadvantage of a passive system compared to an active system is its performance.

Clearly, the performance of a passive systems is lower than a corresponding active system. 

Displacement
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Figure 1.8 A rubber bearing and its representative behavior (photo by Baris Erkus)
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In summary, while passive systems are applied to various problems, they are more common

in seismic protection than other control strategies since a system with a high likelihood of suc-

cessful operation yet with a lower performance is more desirable in seismic design, instead of an

active system with a very high performance but also very high risks of inoperation. Due to these

and other reasons, passive control strategies have been applied for seismic protection throughout

the world.

1.1.3 Semiactive Control

Semiactive systems combine the robustness characteristics of passive systems and perfor-

mance characteristics of active systems. In general, semiactive devices are controllable passive

devices (i.e, their stiffness and damping characteristics can be controlled dynamically) and,

therefore, they cannot input energy into the system being controlled. The power requirements of

semiactive devices are generally very small compared to active devices. Semiactive control is

applied in a fashion similar to an active system as shown in Figure 1.2. Some examples of semi-

active devices are variable-orifice dampers, variable-stiffness devices, variable-friction dampers,

semiactive hydraulic dampers, and controllable-fluid dampers such as magnetorheological (MR)

fluid and electrorheological (ER) fluid dampers. Variable-stiffness devices, as the name implies,

provide a variable stiffness that can be tuned dynamically to change the natural frequencies of

the structure to avoid resonance. Variable-damping devices — also called smart dampers — pro-

vide a variable damping that can be controlled to dissipative energy in an optimal manner.

The advantages and disadvantages of semiactive devices relative to active and passive

devices can be summarized in several respects. First, semiactive devices are passive devices that

cannot input energy into the system being controlled, yet, they can be controlled to have desired

mechanical characteristics; thus, semiactive devices have robustness characteristics superior to
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active devices, and performance characteristics superior to passive devices. These performance

and robustness characteristics, in addition to their low operational energy requirements, make

them very desirable and practical, especially from a seismic design point of view. Second, these

devices have low initial and maintenance costs compared to active devices. On the other hand,

there are some complex problems, where semiactive performance is limited.

In general, semiactive active systems are sound alternatives to active and passive systems.

However, semiactive control did not receive considerable attention until experimental and

numerical demonstrations showed that semiactive control with smart dampers can provide per-

formance comparable to that of active control (Patten et al. 1994a, b; Dyke et al. 1996). After

these results, semiactive control attracted the structural control community, and a vast body of

research on various semiactive devices, particularly smart dampers, and their implementations

on various control problems has been reported (Housner et al. 1997; Spencer and Sain 1997;

Symans and Constantinou 1999; Spencer et al. 2000; Erkus et al. 2002; Ramallo et al. 2002;

Soong and Spencer 2002; Johnson et al. 2006). These applications are in a wide spectrum from

applications to building for seismic protection to cable vibration mitigation for cable-stayed and

suspension bridges. 

1.1.4 Significance of Semiactive Control for Performance and Robustness

It is very clear that the structural control field provides a wide variety of solutions to various

structural engineering problems, addressing both safety and serviceability issues. In the previous

sections, the energy dissipation and controllability of the devices are said to be the primary fac-

tors that effect the selection and applicability of the control strategy to a particular problem. If a

control device has the ability to inject energy into the system to which it is attached, it may not be

robust when the system exhibits extreme nonlinear behavior. On the other hand, if the device can
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only dissipate energy, it will have better robustness characteristics. Therefore, if the structural

design goal is to achieve a high performance, the engineer sacrifice robustness characteristics,

and vice versa. This can be put in a more formal way as follows: a structural control problem is

typically a trade-off between performance and robustness. The structural engineer must clarify

performance and robustness goals considering the safety and serviceability requirements, and

select a control strategy that is most suitable to achieve these goals. In this respect, the control

strategies discussed in the previous sections are summarized in Table 1.1. Clearly, semiactive

devices are very promising in the applications where robustness is essential yet performance of

alternate passive control approaches are not adequate.

1.2 Smart Dampers and Dissipativity

Smart dampers are nonlinear dampers with controllable damping characteristics. Therefore,

they have the fundamental physical property of a simple mechanical damper (e.g., a simple dash-

pot element): they dissipate energy from the system to which they are attached. This section

gives a review of smart dampers in the framework of energy dissipation. First, the operational

 Table 1.1: A comparison of the control strategies from the point of view of performance and 
robustness

Characteristics Active Semiactive Passive

Energy Can input energy
Can dissipate energy

Can only dissipate 
energy

Can only dissipate 
energy

Ability to Control Fully active Controllable damping 
and/or stiffness Not controllable

Robustness Critical for extremely 
nonlinear behavior Good Good

Performance High High to Low Low
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principle behind a smart damper is given considering an MR damper as an example. Then, meth-

ods used to control a smart damper and the effect of the dissipative nature of a smart damper on

the efficiency of the control method are discussed in detail. 

1.2.1 An Example of Smart Dampers: MR Dampers

An MR damper is composed of a special fluid, where micron-size particles that can be polar-

ized by magnetic field are held in suspension. The fluid originally shows a Newtonian fluid

behavior; however, when a magnetic field is applied to the fluid, the particles form a chain-like

structure in the fluid, and change the fluid into a semi-solid form (Figure 1.9). The semi-solid

form of the fluid has a yield strength; therefore, the damper can exert various levels of forces

with various magnetic field magnitudes. Typical force-displacement and force-velocity relations

for an MR damper are shown in Figure 1.10. When the magnetic field is removed, the fluid

returns to its original form. This reversible action takes milliseconds, allowing the damper to be

controlled efficiently. Recently, a commercial sized damper, which is shown is shown in Figure

Magnetic Field

MR Fluid

Polarizable 
micron-size particles

WITHOUT MAGNETIC FIELD WITH MAGNETIC FIELD

Figure 1.9 MR fluid with and without a magnetic field
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1.11, produced by the Lord Corporation, has been tested by Yang et al. (2002). MR dampers

became very popular in the last decade, and various practical applications have been reported

recently (Spencer and Nagarajaiah 2003).

1.2.2 Control of a Smart Damper

In general, the development of a theory that encompasses all of the challenges of controlling

a smart damper is nontrivial. The challenges are mainly due to the extremely nonlinear behavior

of smart dampers caused by their energy dissipation characteristics. In practice, methods

employed to control smart dampers are based on well-defined active control theories. An often-

employed semiactive control strategy for smart-dampers that makes use of active control theories

is clipped optimal control (Dyke et al. 1996; Spencer et al. 2000; Erkus et al. 2002; Ramallo et

al. 2002; Johnson et al. 2006). Clipped optimal control assumes that the structure is linear and

the control device is fully active. It then employs a linear active control theory to design a pri-

mary controller, and a clipping algorithm is used as a secondary controller to make the damper

mimic an active device and produce a force close to that commanded by the primary controller

Figure 1.10 A representative behavior of an MR damper
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(Figure 1.12). The primary controller is often a linear quadratic (LQ) optimal controller since this

class of control theory is well-known and is widely applied in structural control. Consider an MR

damper as an example. Assume that the damper is commanded by varying the voltage to an elec-

Testing of the commercial size MR damper

A schematic figure of the commercial size MR damper

Figure 1.11 A commercial size MR damper (Yang et al. 2002)
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tromagnet that creates the desired magnetic field for operation. The damper achieves its mini-

mum and maximum forces for minimum and maximum voltages, respectively. Hence, the

damper can exhibit a wide variety of forces by varying the voltage. This behavior is illustrated in

Figure 1.13. Clipped optimal control aims to reproduce the primary control force by varying the

voltage to the damper. Considering the nonlinear behavior of a damper, clipped optimal control is

a very practical and effective approach to command a smart damper. 

1.2.3 Dissipativity and Semiactive Control

The effectiveness of a smart damper commanded by the clipped optimal control strategy can

be explained by the primary control force being highly dissipative and, thus, suitable for the

damper to mimic. In a narrow sense, the dissipative nature of a smart damper can be character-

ized by a simple nonlinear inequality given by , where  is the damper force and  is

the velocity across the damper. Similarly, a dissipative primary control force can be defined as

, where  is the primary control force. This inequality simply states that the energy

Smart 
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Structure
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Controller

Excitation

MeasurementsDamper Force

Secondary 
Controller

ua: active control force, v: command parameter (e.g. voltage), 

ud: damper force
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Figure 1.12 A simplified representation of a clipped optimal control strategy
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flow rate of the primary control force is negative. Therefore, if a fully active device is com-

manded by a control force  during a time period  (  being the velocity of the point

where the device is exerting force), the device will dissipate energy from the structure during .

In general, one cannot enforce the condition  on the primary controller of an LQ-based

clipped optimal control strategy, and the dissipative nature of the controller is arbitrary. For

example, the dissipativity condition is mostly satisfied for multistory buildings where the con-

troller is placed in the first floor or in between the base and the ground (Dyke et al. 1996, 1998).

There are other systems and control designs where the controller must add energy to the struc-
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tural system to achieve a specific set of design objectives, and the primary controller may com-

mand highly nondissipative forces, e.g., highway bridges and low-mass secondary systems

(Inoudi 2000; Erkus et al. 2002). Both types of examples show that the dissipative nature of the

primary controller is an important parameter that should be investigated to understand and pre-

dict the performance of a semiactive system with a smart damper commanded by a clipped opti-

mal control algorithm. Insight into the concept of dissipativity may also help to develop methods

to modify the primary controller so that designers can alter the dissipativity of the controller to

get the uppermost performance from a smart damper. 

In the literature, there is very little work that investigates the dissipative characteristics of the

primary controller in a clipped optimal control strategy. This is particularly due to the absence of

well defined indices that can measure the dissipativity of the primary control force. Inaudi (2000)

proposed a stochastic index that estimates the probability of the primary control force being dis-

sipative, i.e., . Later, Christenson (2003, 2004) justified the correlation between

 and the performance of the semiactive systems by implementing several numerical

examples. Simple deterministic indices based on the dynamic time-history analyses are also used

to observe the effect of the dissipative nature of the control force and the ability of the damper to

mimic the control force (e.g., Erkus et al. 2002).

From a practical point of view, a stochastic index gives a broader sense of the dissipativity of

a controller in the design stage without time-consuming simulations, whereas a deterministic

index is useful to investigate a specific controller for a specific excitation. A stochastic index,

however, has a more crucial advantage over a deterministic index: it can be used in conjunction

with special methods, such as convex multiobjective techniques, to obtain controllers with vari-

ous dissipativity levels. These methods are quite popular in the control field, since they allow

P uavd 0

P uavd 0
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numerical solution of multiobjective optimal control problems that do not have analytical solu-

tion. In fact, numerical solutions of these problems are straightforward if they can be represented

as eigenvalue problems in terms of special matrix functions known as linear matrix inequalities

(LMIs). On the other hand, for problems that cannot be represented in terms of LMIs, a solution

is not always guaranteed, and more sophisticated methods should be employed. Whether they

yield numerically solvable problems or not, convex multiobjective techniques are quite helpful

for giving insight into very complex problems that cannot be investigated analytically, and can

also be used to investigate dissipativity employing stochastic dissipativity indices.

The dissipativity concept can be investigated with two focuses. The first focus is given to

simple structural systems such as two-degrees-of-freedom (2-DOF) structure models to explore

the fundamental dissipativity concept. The second focus is on realistic structural control prob-

lems to investigate the theories used and results obtained for the simple models.

The first type of structural systems should be as simple as possible so that effects of other

complexities are eliminated from the results to best understand dissipativity. Two structures are

used herein for this goal. The first structure is a simple 2-DOF building where a damper is placed

in the first story. This is a very typical example that has been used frequently by researchers. The

second structure is a 2-DOF elevated highway bridge model. The uniqueness of this bridge

model comes from the fact that the masses are distributed unevenly, resulting in interesting

dynamic characteristics.

The second type of problem should include realistic structure and damper models and as

many aspects of a real-life structural control problem as possible. A good example for this type

of structure is the recently introduced base isolated benchmark structure (Narasimhan et al.

2006). The benchmark structure is a three-dimensional, L-shaped, eight-story building that is
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typical in the Los Angeles area. The isolation in this benchmark study can have various isolation

elements such as linear rubber bearings and bilinear lead-rubber bearings. This structure has

many aspects that an engineer faces in a real-life structural control project and is very suitable to

investigate the dissipativity concepts discussed previously.

The goal of this research is to give a detailed insight into the concept of dissipativity in semi-

active control with smart dampers. Simple and complex structures are considered for numerical

analysis. In the following, the objective and scope of this dissertation is explained in detail, and

an agenda is provided.

1.3 Objective and Scope

The objectives of this study are

• to exploit the possibility of better semiactive system performance with smart dampers using

dissipative-based control theories or control design methodologies that take into account dis-

sipativity in contrast with conventional control design methods;

• to provide practical yet efficient indices for quantification of dissipative forces;

• to investigate the limits of semiactive performance for a wide variety of common structural

systems;

• to provide generalized dissipativity-performance relations in semiactive systems with smart

dampers.

The scope of this study is given as follows:

• Structural systems: Linear 2-DOF civil structures and a complex, high-order, linear, realistic

base-isolated building with linear and bilinear isolators (base isolated benchmark problem).

• Semiactive devices: A theoretical ideal smart damper and a 20-ton MR damper.

• External loadings: White-noise and real-life earthquake ground accelerations.
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• Active control theories: Linear quadratic (LQ) based optimal control theories.

• Semiactive control theories: A clipped optimal control theory.

• Modeling of earthquake ground accelerations: A Kanai-Tajimi filter

• State estimator: A Kalman filter.

• Software: MATLAB®, Simulink®, MATLAB® LMI Control Toolbox.

1.4 Organization of the Dissertation

The content of this dissertation is summarized as follows:

• Chapter 2, Literature Survey: This chapter summarizes the available literature on dissipativ-

ity in semiactive control in civil engineering. These papers are by Inaudi (2000), Christenson

(2003, 2004), Erkus et al. (2002) and Johnson (2000).

• Chapter 3, Background: In this chapter, the mathematical and mechanical background infor-

mation that is required for the dissertation is reviewed.

• Chapter 4, Dissipativity and Dissipativity Indices: In this chapter, the concept of dissipativity

is formalized, and previous and proposed dissipativity indices are given.

• Chapter 5, Dissipativity-Based Control via LMI Synthesis: This chapter focuses on LMI

techniques that are used to develop a LQ-based control theory with a dissipativity constraint.

First, an linear quadratic regulator (LQR) problem is represented in terms of a LMI-based

optimization problem. Then, the equivalency of the LMI-LQR and LQR problems is verified

with a numerical study. Finally, dissipativity indices are used to obtain dissipativity con-

straints that are suitable for an LQ problem.

• Chapter 6, Dissipativity Analysis of Simple 2-DOF systems: In this chapter, advanced LMI-

based techniques are utilized to investigate and improve the dissipativity characteristics of a

standard clipped optimal control with an LQ-based primary controller for simple 2-DOF
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structural systems. The LQR controller proposed in the previous chapter is implemented on

two structures to observe the index–performance relations for several dissipativity levels and

controller parameters for one dissipativity constraint: (1) a two-degree-of-freedom shear

structure (2-DOF) with an ideal semiactive damper attached in the first story, and (2) a sim-

plified 2-DOF highway bridge model given by Erkus et al. (2002) with an MR fluid damper

(Yang et al., 2002) in the isolation layer below the deck. For the other dissipativity con-

straint, an iterative method is proposed to implement the LMI-LQR. The results are pre-

sented in tabular and graphical forms. Herein, the base controller is a state-feedback LQR

controller. The MATLAB® LMI Control Toolbox (Gahinet et al. 1995) is used as the LMI

solver.

• Chapter 7, Dissipativity-Based Performance Analysis of the Smart Base Isolated Benchmark

Building: This chapter is a numerical study of the dissipativity of the base isolated bench-

mark building and considers two types of isolation layers: linear and nonlinear. In the linear

case, the structure has simple linear rubber bearings, while the nonlinear isolation has linear

and bilinear bearings. This chapter also provides an equivalent linearization technique to uti-

lize linear control theory for a nonlinear structure.

• Chapter 8, Conclusions and Directions for Future Research: In this chapter, major conclu-

sions are listed, and suggested areas for future research are given.
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CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

Literature that focuses on dissipativity and its effects on the performance of semiactive con-

trol with smart dampers and clipped optimal control is very limited although researchers in the

area of semiactive control have been long aware of the dissipativity concept. The reason for the

lack of research on these topics is that semiactive control has only very recently become a sound

alternative to other control strategies, and most of the smart damper applications in civil engi-

neering already yielded satisfactory results. The author is aware of only four major works con-

cerning the dissipativity concept in the semiactive control of civil structures. These papers are

reviewed in this chapter.

2.2 Works by Inaudi (2000) and Christenson (2003, 2004)

The first important paper that investigated dissipativity in semiactive control with smart

dampers and clipped optimal control is by Inaudi (2000). Although this paper’s focus is not dissi-

pativity and a very small section is provided on this topic, the results are significant. The section

titled “Can semiactive dampers realize an LQR controller with accuracy?” starts with the state-

ment that a semiactive damper can mimic an LQR control force only if the control force dissi-

pates energy, i.e., . It should be noted that the term “a semiactive damper” in this

statement represents a theoretical damper, which can apply any dissipative force. Then, he states

that probability of the event  for a closed-loop structure can be used as a measure for

dissipativity, and derives this probability for a structure with an LQR controller and excited by a

uavd 0
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zero-mean, stationary, Gaussian white noise process. This derivation requires the transformation

of zero-mean joint Gaussian random variables  and  to two zero-mean, unit-variance, Gaus-

sian, independent random variables, which is provided in detail by Christenson (2003). The

probability of a control force being  is then found to be

(2.1)

where  is the correlation coefficient between  and . Three examples are considered by

Inaudi (2000), which are summarized in Figure 2.1. In all of the examples, LQR control is

designed such that control force  aims to reduce the interstory drifts (in the example (b), drift

of the main structure). It is shown that the control force has high likelihood of being dissipative

in the first example, while it has low likelihood in the second and third examples. Based on these

results, Inaudi concluded that a semiactive damper would be successful in mimicking the control

force in the first example and would not be efficient in the second and third example. Christenson

(2003) further considered a multi-degree-of-freedom (MDOF) coupled structure and a cable

vibration problem, where he concluded that  can be used as a useful measure in a semi-

active control design to avoid time consuming simulations. Also, Christenson (2004) suggested

an approach for the design of semiactive structures with smart dampers based on the estimation

of .

2.3 Work by Erkus et al. (2002)

In this work, clipped optimal control of a 2-DOF highway bridge with an MR damper is con-

sidered. While a 2-DOF model is a very simple model for a bridge, it is very useful to understand

the behavior of isolated bridges and, therefore, is used very extensively. Two LQR primary con-
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Figure 2.1 Examples considered by Inaudi (2000)
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trollers are designed. In the first design, designated “D1”, the goal is to minimize the pier

responses, mainly pier drift; in the second design, designated “D2”, the goal is to minimize the

bearing responses, mainly bearing drift. Three different control approaches are considered: opti-

mal passive, fully active, semiactive with an MR damper. Each of these designs uses linear stiff-

ness and damping of both bearing and pier. It is shown by numerical simulations that an MR

damper is successful in simulating the primary control force in an efficient manner for design

Figure 2.2 Example considered by Erkus et al. (2002)

Rubber
Bearing
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Pier (m1)
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MR Damper
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D2. On the other hand, for design D1, the damper is not able to mimic the primary control force;

instead, the behavior of the semiactive system is very similar to the optimally designed passive

system.

From Erkus et al. (2002), Figure 2.3 shows the primary control force vs. velocity and vs.

damper drift curves. The dissipative regions in the primary control force versus damper velocity

plots are shown by the shaded areas. Clearly, the control force is more dissipative using design

D2 than using D1. This is also observed by the shape of the control force versus damper dis-

placement curves, which are more elliptical in design D2. Also introduced is the percentage of

direction coincidence, which is the percent of the time that the damper velocity is in the opposite

direction of the primary control force (note that the sign convention used in the paper by Erkus et
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al. (2002) is slightly different than the sign convention used herein; therefore, the dissipative

regions in Erkus et al. (2002) correspond to ). This is, in fact, the percentage of the con-

trol forces that fall in the shaded areas in the control force versus damper velocity graphs It is

also a deterministic index of percent dissipative forces. This index was computed for various

control designs and earthquakes; the control designs that are suitable for a smart damper were

identified. It is found that direction coincidence shows the same trend for all earthquakes. It is

also observed that D1 is a control design that falls in a region with low direction coincidence val-

ues, and D2 falls in a region with high direction coincidence value.

2.4 Work by Johnson (2000)

 The paper by Johnson (2000) concentrates on the LQR control theory. An LQR problem is

essentially an optimization problem where a cost function is minimized subject to a dynamical

equality constraint. In the original theory, the cost function includes a cross-term that corre-

sponds to the multiplication of states and control force with a constant coefficient. In structural

control, LQR is generally used ignoring this cross-term by using a zero coefficient. However, it

is possible to select a coefficient such that the cross-term becomes ; i.e., the LQR also tries

to minimize , which may result in controllers with better dissipativity characteristics. How-

ever, numerical simulations showed that this approach has a minor effect on the controller.
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CHAPTER 3

BACKGROUND

3.1 Introduction

In this chapter, a review is given of the mathematical and mechanical background that is

required to understand the concepts presented in this dissertation. It should be noted that most of

the material given herein are well-known in the mathematical controls community, though they

may be new to current structural control practice. Therefore, they are essential for the complete-

ness of this dissertation.

The concepts given below are based on considerably complex mathematical theories which,

in their original sources, may be very difficult to comprehend. Therefore, the author has tried to

present the concepts in a simple manner so as to be accessible to the general structural engineer-

ing community without forfeiting their original mathematical meaning and strength. Readers are

strongly recommended to refer to the articles and books cited herein for further and detailed

information.

3.2 Mathematical Background

3.2.1 Definitions

Definition 3.1  A function  is a linear function of  if  for

all scalar  and .

Definition 3.2  A function  is an affine function of  if it can be written as 

where  is a linear function and  is a constant.

f x x f x1 x2+ f x1 f x2+=

g x x g x f x a+=

f x a
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To illustrate these concepts better, examples for a linear and an affine function are given in

Figure 3.1. 

Definition 3.3  A set  is convex if  for any  and any

.

Figure 3.2 illustrates convex and nonconvex sets in a two-dimensional space, i.e., n = 2.

x

An affine function

g (x)

f (x)

A linear function

Figure 3.1 Examples of linear and affine functions

C n x1 1 – x2+ C x1 x2 C

0 1

point x1
point x2

point x1
point x2

A Convex Set A Nonconvex Set

Figure 3.2 Examples of convex and nonconvex sets
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3.2.2 Linear Matrix Inequalities

The matrix inequality

(3.1)

is called a linear matrix inequality, where  is an affine function of the real vector

 and , , …,  are real symmetric matrices.

As mentioned before, control theories and problems that involve LMIs are quite involved

and require a good understanding of the mathematical theory of LMIs. Herein, the major proper-

ties of LMIs are given.

• The inequality  implies that  is a positive definite matrix, i.e., the real parts of

all eigenvalues of  are positive, and  for any vector .

• A vector  that satisfies the inequality (3.1) is known as a feasible solution of the LMI. The

feasible solution set of the inequality (3.1), , is a convex set. Convexity is an

important property since there are powerful numerical techniques for the solution of LMI

problems with convex solution sets (Boyd et al. 1994; Nesterov and Nemirovskii 1994).

• Some inequalities not in the form of (3.1) can be converted to LMIs by some algebraic oper-

ations. Also, multiple LMIs can be represented with a single equivalent LMI by defining a

new variable vector that includes the variables of the multiple LMIs. Further, the solution set

of some nonconvex matrix inequalities can be mapped into a convex solution set of a corre-

sponding LMI. Therefore, a problem that cannot be solved analytically or numerically, due

to several types of inequalities, can be solved numerically if these inequalities can be con-

verted into LMIs.

• Often encountered in control problems are inequalities with matrix variables instead of a

vector as given in inequality (3.1). As an example, consider the Lyapunov inequality

F x( ) F0 x1F1 xnFn+ + + 0=

F x( )

x x1 x2 xn
T= F0 F1 Fn

F x( ) 0 F x( )

F x( ) uTF x u 0 u 0

x

x F x( ) 0
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 where  is a given (known) matrix, and the symmetric real matrix  is the

variable. This inequality can easily be reduced to the form given by inequality (3.1) (Boyd et

al. 1994). In this dissertation, these types of LMIs will not be explicitly reduced to vector

form (3.1); rather, they will be used as they are.

• According to the definitions given above, the function  given in (3.1) is an affine func-

tion of , not linear. Some authors (e.g., Dullerud and Paganini 2000) prefer to use the fol-

lowing for the definition of an LMI:

(3.2)

where  is a linear function of .

Definition 3.4 The inequality  is a strict LMI while  is a nonstrict LMI.

A note on strict and nonstrict LMIs regarding the numerical considerations is given in

Appendix A.4.

3.2.3 Bilinear Matrix Inequalities

The inequality

(3.3)

is called a bilinear matrix inequality and the matrix valued function  is called bilinear if

 is affine with respect to each of its arguments; i.e.,  is affine in  when  is fixed

and vice versa.

BMIs are, in general, nonconvex and have an intractable computational complexity known

as -hardness (Toker and Özbay 1995). Therefore, there are no efficient algorithms for the

numerical solution of problems involving BMIs (see Appendix A.3 for a note). However, by

defining new variables, some BMIs can be converted to equivalent LMIs; i.e., a new LMI is

AP PAT+ 0 A P

F x( )

x

F x( ) x1F1 xnFn+ + F0–=

F x( ) x

F x( ) 0 F x( ) 0
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defined whose solution set can be mapped into the solution set of the BMI. This property is

important since BMIs are frequently encountered in control problems.

Theorem 3.1  (Schur complement formula) The set of matrix inequalities 

    and    (3.4)

is equivalent to

   and   (3.5)

where ,  and  are matrices, and  and  are symmetric. See Dullerud and Paganini

(2000) for a proof of this theorem.

The Schur complement formula is a tool used frequently in the control field to convert some

BMIs into LMIs. 

3.2.4 Stability and Lyapunov’s Equality

There are various interpretations of stability in the general field of civil engineering. In this

dissertation, stability will refer to bounded-input-bounded-output (BIBO) stability when dealing

with control theories (see, e.g., Chen (1999) for a definition and treatment of BIBO stability).

This definition is summarized as follows.

A linear time-invariant system given by  is stable if every eigenvalue of  has a

negative real part (Chen 1999). A matrix  satisfying this condition is called Hurwitz. A conve-

nient way to check the eigenvalues of  is to employ a Lyapunov equation as follows: All eigen-

values of  have negative real parts if and only if, for any given matrix , there

exists a unique solution  for the Lyapunov equation given by  (or

). This condition can also be stated as follows: The system  is stable

R 0 Q SR 1– ST– 0

Q S
ST R

0 R 0

Q R S Q R

q· Aq= A

A

A

A Q QT 0=

S ST 0= AS SAT+ Q–=

ATS SA+ Q–= q· Aq=
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(and  is Hurwitz) if the LMI , or its strict version , has a

feasible solution  (see, e.g., Slotine and Li (1991) for a treatment of Lyapunov stabil-

ity theory). Herein,  is called the Lyapunov matrix. 

There are other useful properties of the Lyapunov equality. For example, the solution of the

Lyapunov equation will simply give the controllability and observability grammians for a spe-

cific value of  (see, e.g., Dullerud and Paganini (2000) for the definitions and deri-

vations). Similarly, for a given system , where  is a white noise external

disturbance with unit intensity , the solution of the Lyapunov equation

for  is simply the expected value of  (i.e., the covariance matrix of the states ). 

3.2.5 LMI Characterization of Multivariable Feedback Control Systems

In a very broad sense, multivariable feedback control deals with problems with more than

one design objective including time and frequency domain constraints (see, e.g., Scherer et al.

(1997) for a list of design objectives encountered frequently in the field of control). In most

cases, an analytical solution for a controller that satisfies multiple constraints is not available. To

obtain an LMI characterization for these types of problems, a method is given by Scherer et al.

(1997) and is very briefly summarized here:

• Consider a closed-loop system , where  is Hurwitz and is a function of the

controller. Let  be the Lyapunov matrix for this closed loop system satisfying the Lyapunov

inequality. For each of the objectives, a matrix inequality condition in terms of a Lyapunov

matrix is found. Inequality conditions are selected such that they are satisfied when the cor-

responding design specification is met. The final inequalities become a function of , the

controller and the Lyapunov matrix. Therefore, these inequalities are, in general, bilinear.

A AS SAT Q+ + 0 AS SAT Q+ + 0

S ST 0=

S

Q QT 0=

q· Aq Ew+= w
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Q EET= qqT q
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• Let the matrix inequality condition associated with the  objective be , where

 is the corresponding Lyapunov matrix and  is the controller. Then, to enforce a unique

Lyapunov matrix for the system, all of the Lyapunov matrices are set to a single Lyapunov

matrix as . Therefore, a problem with several BMIs, whose Lyapunov

matrices are all , is obtained.

• The final step is to introduce new variables or to employ some algebraic manipulations to

convert BMIs into LMIs. After obtaining an LMI for each constraint, all LMIs are cast into a

single LMI. After these manipulations, the final problem will have a convex LMI constraint

and can be solved numerically. It should be noted that the mapping between the BMIs and

LMIs must be one-to-one.

3.2.6 Eigenvalue Problems

If the problem includes an optimization criteria, the LMI problem is generally in the form of

an eigenvalue problem (Boyd et al. 1994). An eigenvalue problem has several representations.

The representation that will be employed in this dissertation is as follows:

(3.6)

where  is a known vector, and  is an LMI. Clearly, the object function  is a linear

function of , and the constraint  is a convex inequality. Another form of the EVP has a

matrix objective function in the form of  where  and  are matrices of appropriate

dimensions, which, in fact, can be represented by (3.6) with some algebraic manipulations (Boyd

et al. 1994; Gahinet et al. 1995).

ith Fi K Si( ) 0
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3.2.7 LQR Control Problem

Consider a linear time-invariant system:

(3.7)

where  is the state vector,  is a vector of control forces,  is a stationary zero-mean white

noise stochastic vector process disturbance with unit intensity, and  is the vector of outputs to

be minimized. In structural control, the excitation is generally earthquake ground acceleration or

wind excitation modelled as filtered white noise, and the outputs are structural response quanti-

ties such as floor drifts or absolute accelerations that lead to a zero . The LQR problem is to

find the control gain  that satisfies the optimization

(3.8)

where  and  are symmetric weighting matrices, and  is a constant feedback gain

matrix. Substituting the output equation in (3.7) into the optimization problem (3.8), one obtains

another form of the LQR problem

(3.9)

where

(3.10)

For the problem defined by (3.9) and (3.10) to be well-posed, design parameters should satisfy

the following inequalities (see the Appendix A.4 for a note on this condition):
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z

Fz

K

E zTQ̃z uTR̃u zTÑu uTÑTz+ ++
K

min

subject to (3.7) and u Kq–=

Q̃ 0 R̃ 0 K

E qTQq uTRu qTNu uTNTq+ ++
K

min

subject to  q· Aq Bu Ew+ += u Kq–=

Q Cz
TQ̃Cz     = N Cz

TQ̃Dz Cz
TÑ+=     R R̃ Dz

TQ̃Dz Dz
TÑ ÑTDz+ + +=
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 and (3.11)

3.3 Mechanical Background

3.3.1 Energy Flow Rate

Consider a continuous external force , which is applied to a system on a surface

region . Let  be the velocity of the surface (with positive velocity in the same direc-

tion as positive forces). The rate of energy added to the system by the force  is given by

 (3.12)

3.3.2 Ideal Smart Damper Model

An ideal smart damper can be considered to be an active device that can only apply dissipa-

tive forces. Therefore, an ideal smart damper can realize a control force when it is dissipative;

otherwise, it produces no force. This behavior can be characterized as follows:

(3.13)

where  and  are the damper force and velocity, respectively, and  is the control force that

is to be realized.

3.3.3 20-ton MR Damper Model

Recently, a 20-ton MR damper prototype was produced by the Lord Corporation, and an effi-

cient mathematical model of this device was developed by Yang et al. (2002) (Figure 3.3). The

W Q N
NT R

0= R 0

f x t

x v x t

f x t

t
E f x t v x t d=

ud

ua, uavd 0

0, uavd 0
=

ud vd ua
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damper is idealized by simple spring and dashpot elements with a Bouc-Wen nonlinear model.

The force is governed by the following equation: 

(3.14)

where  and  are governed by the following differential equations:

(3.15)

(3.16)

The damping characteristics can be changed by modifying the current as follows:

(3.17)

where the currrent  is in Amperes,  is in N, and the damping constants  and  are

in N.sec/m. Other parameters are , , N/m,

Bouc-Wen

F
c0

k0
c1

k1

y x

Figure 3.3 Mechanical model of a 20-ton MR damper (Yang et al. 2002)

F z c0 x· y·– k0 x y– k1 x x0–+ + + c1y· k1 x x0–+= =

z y

z· x· y·– z z n 1–– x· y·– z n A x· y·–+–=

y· 1
c0 c1+
---------------- z c0x· k0 x y–+ +=

i 16566i3 87071i2– 168326i 15114+ +=
c0 i 437097i3 1545407i2– 1641376i 457741+ +=

c1 i 9363108i3– 5334183i2 48788640i 2791630–+ +=

i i c0 i c1 i

A 2679= m 1– 647.46= = m 1– k0 137810=
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, m, N/m. The maximum current that can be applied to the

damper is A. (It should be noted that the units of the MR damper parameters given

herein are not consistent. However, these values are directly taken from Yang et al. (2002) with-

out any modification.)

To illustrate the mathematical model given above, a numerical simulation is done for a 1 Hz

frequency and 2 cm amplitude sinusoidal excitation, and the response characteristics of the

model are given in Figure 3.4.

3.3.4 Clipped Optimal Control

The secondary controller in the clipped optimal control commands the damper current using

the following law (Dyke et al. 1996):

(3.18)

where  is the Heaviside step function,  is the maximum current that can be applied to

the damper,  is the primary control force and  is the damper force. In discrete form, (3.18)

can be written as

(3.19)

A graphical representation of the clipping algorithm is shown in Figure 3.5.

n 10= x0 0.18= k1 617.31=
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ua ud

it imaxH ua
t ud
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i = 0

i = 0

Figure 3.5 Graphical representation of the secondary controller (Dyke et al. 1996)
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CHAPTER 4

DISSIPATIVITY AND DISSIPATIVITY INDICES

4.1 Introduction

In this chapter, a review of the available dissipativity indices is given, and the proposed dis-

sipativity indices are defined. For this purpose, a formal definition of a dissipative force is intro-

duced. 

4.2 Strictly Dissipative Force

Consider a continuous external force , which is applied to a system on a surface

region . Let  be the velocity of the surface (with positive velocity in the same direc-

tion as positive forces). The force  is called a strictly dissipative force if the rate of energy

added is negative for all . Or, without loss of generality,

(4.1)

where  is a strictly negative real function.

When the external force is a point load applied at point  on the system, (4.1) simplifies to

, (4.2)

where  is the velocity of point , and the location parameter  is dropped for simplicity. 

The definition given by (4.2) is more suitable for a control problem since the control force is

generally modelled as a point load. This condition simply states that the directions of the force

and the velocity are always opposite. In fact, this is the case for a damper. Therefore, a damper

f x t

x v x t

f x t

t 0

f x t v x t d t 0   for all  t 0 f x t  is strictly dissipative

t

x0

f t v t t 0   for all  t 0 f t  is strictly dissipative

v t x0 x0
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force is a strictly dissipative force, and the rate it injects into the system is always negative (i.e.,

it is always dissipating energy). In this dissertation, the term dissipative force is used instead of

strictly dissipative force for convenience.

4.3 Previously Used Dissipativity Indices

4.3.1 Percentage of Dissipative Control Forces

The following deterministic index computes the percentage of the time that the primary con-

trol force commands dissipative forces:

(4.3)

where  is the Heaviside unit step function. Since this index is deterministic, a discrete time

representation is useful. For a time step ,  can be written as

(4.4)

where  and  are the control force and the damper force at the time . The

higher D%-value shows that the control force is more often dissipative.

4.3.2 Probability that the Control Force is Dissipative

For a linear system with stationary Gaussian responses, the probability that the control force

is strictly dissipative is given by (Inaudi 2000)

(4.5)

D% 1 1
T
--- H uavd td

0

T

–=

H ·( )

t T N= D%

D% 1 1
N
---- H ua k t( )vd k t( )

k 0=

N 1–

–=

ua k t( ) vd k t( ) k t

Dp P uavd 0 uavd
acos
---------------------------= =
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where  is the correlation coefficient between  and . For a linear system and a linear

controller,  can be found by dividing the off-diagonal term to the square root of the product

of the diagonal terms of the symmetric covariance matrix of the output .

4.4 Proposed Dissipativity Indices

4.4.1 Expected Value of the Energy Flow Rate

Since the dissipative force condition given by (4.2) is not stochastic, it cannot be directly

used to examine a controller in a stochastic problem. Therefore, the expected value of this condi-

tion is given as follows:

(4.6)

Note that  does not necessarily mean that the control force is strictly dissipative or

mostly strictly dissipative. However, it is clear that for values of ,  has a

higher mean energy dissipation rate, which can be used as an indication of the dissipative nature

of the control force. Therefore the following index is proposed:

(4.7)

 is called the mean energy flow rate in this dissertation.

4.4.2 Normalized Mean Energy Flow Rate

One problem with  is that it is not unitless; i.e., a large magnitude of  may be an indi-

cation of very large values of force . To avoid this problem, a normalized index is also pro-

posed as follows:

uavd
ua vd

uavd

z ua   vd
T=

E ua t vd t E t t= 0 ua t  is strictly dissipative

E uavd 0

E uavd t« 0 ua

De E uavd=

De

De De

ua
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(4.8)

 is called the normalized mean energy flow rate herein. Clearly, a negative value of  indi-

cates the likelihood of the control force being strictly dissipative.

4.5 The Relation Between Dp and Dne for an LQ Problem

In a standard LQ problem, all stochastic variables are zero-mean. Therefore,  is, in fact,

the correlation coefficient between the force  and the velocity , i.e., . There-

fore,  holds. Moreover, since the denominator of  is always positive, then if

 holds, the controller is more likely to produce strictly negative control forces. Also

note that for , the probability index becomes  as shown in Figure 4.1.

On the other hand, if , the controller force is more likely to add energy to the system

and .

Dne
E uavd

E ua
2 E vd

2
-------------------------------------=

Dne Dne
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ua vd Dne uavd
=

1– Dne 1 Dne

1– Dne 0

1– Dne 0 0.5 Dp 1

0 Dne 1

0 Dp 0.5

−1 0 1

0.5

0

1

ρ
uavd

Dp

DISSIPATIVE 
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Figure 4.1 Relation between Dp and uavd
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4.6 Summary

In this chapter, a mathematical formalization of dissipativity in the context of semiactive

control with smart dampers is provided. Two indices are introduced in addition to two previously

used indices to quantify dissipativity. Also discussed is the relation between the indices Dp and

Dne. These dissipativity indices will be used in the following chapters to obtain controllers that

are better suited for smart dampers and to expose dissipativity-performance relations in semi-

active structures.
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CHAPTER 5

DISSIPATIVITY-BASED CONTROL VIA LMI SYNTHESIS

5.1 Introduction

In this chapter, an LMI-EVP that is equivalent to a standard LQR problem is derived. Then,

two of the dissipativity indices are used to obtain so-called dissipativity constraints that can be

appended to the EVP to obtain control forces with various dissipativity levels.

5.2 LMI-EVP Representation of an LQR Problem

A derivation of the LMI-EVP representation of an LQR problem is given utilizing the

method summarized in Section 3.2.5. First, the LQR problem is redefined in a form suitable for

LMI characterization as follows: consider the LQR problem given by (3.9) and (3.10). Let 

and  be real symmetric matrices that satisfy  and . Using

, optimization (3.9) can be written as

(5.1)

Let , which is the state covariance matrix; clearly,  if  is sta-

ble. Utilizing the trace operator  and a Lyapunov equation, whose solution gives the state

covariance matrix, to represent the stability of the system, optimization (5.1) can be written as 

(5.2)

Q1 2/

R1 2/ Q1 2/ Q1 2/ Q= R1 2/ R1 2/ R=

u Kq–=

E qTQ1 2Q1 2q qTKTR1 2R1 2Kq qTNKq– qTKTNTq–+
K

min

subject to  q· A BK– q Ew+=

E qqT P= P PT 0= A BK–

Tr .

Tr Q1 2PQ1 2 Tr R1 2KPKTR1 2 Tr KPN– Tr NTPKT–+
K P
min

subject to  A BK– P P A BK– T EET+ + 0= ,        P PT= 0
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Having redefined the LQR problem in a form suitable for LMI characterization, the LMI-

EVP representation can be found using the first step of the aforementioned method (Scherer et

al. 1997). For this purpose, the following optimization problem for the closed loop system

 and  is defined:

(5.3)

where  is the Lyapunov matrix. It is proposed that the solution of (5.2) is indeed equivalent to

the solution of (5.3); i.e., if  and  are the solutions to (5.2), and  and  are the solu-

tions to (5.3), then  and . One should note that although  does not represent

the state covariance matrix, the solution of (5.3), , is equal to the state covariance matrix.

Proof of this proposition is given next. For this purpose, some useful corollaries are given first.

In corollaries 5.1 to 5.5 and Lemma 5.6, it is assumed that ,  and  is

Hurwitz. Also, the following shorthand notations are used:  and

 where .

Corollary 5.1  .

Proof:  

.

Corollary 5.2   and   . This is a consequence of corollary 5.1.

Corollary 5.3  

Proof:  Let  be the  row of . Then,     

.

q· Aq Bu Ew+ += u Fq–=

Tr Q1 2SQ1 2 Tr R1 2FSFTR1 2 Tr FSN– Tr NTSFT–+
F S
min

subject to A BF– S S A BF– T EET+ + 0,       S ST= 0

S

K0 P0 F0 S0

K0 F0= P0 S0= S

S0

S ST= 0 P PT= 0 A

LS AS SAT+ +

LP AP PAT+ + T 0=

S P LS LP

S P S P– 0 A S P– S P– AT+ 0 AS SAT+ AP PAT+

LS LP

LS 0 LP 0= S P

T 0= Tr C CT 0

ci ith C 0 ci ci
T 0 i

ci ci
T

i
Tr C CT 0=
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Corollary 5.4   .

Proof:  

Corollary 5.5  Let . Then, there exists a unique matrix  such that

 and  for any . Moreover,  holds for

any . 

Proof:  See corollaries 5.2 and 5.4.

Lemma 5.6  Let

(5.4)

Then,  and . The proof is readily obtained using Corollary

5.5.

Theorem 5.7  The problems given by (5.2) and (5.3) are equivalent.

Proof:  It can be shown with some matrix algebra that the objective function in the LQR problem

can be written as

(5.5)

where

(5.6)

S P Tr CSCT Tr CPCT

S P S P– 0 Tr C S P– CT 0 Tr CSCT CPCT– 0

Tr CSCT Tr CPCT– 0 Tr CSCT Tr CPCT

S S LS 0= P0

P0 P LP 0== P0 S S S Tr CP0CT Tr CSCT

S S

P0 P LP 0==

S0      Tr CSCT
S

minarg

subject to   LS 0

=

S0 P0= Tr CS0CT Tr CP0CT=

Tr Q1 2PQ1 2 Tr R1 2KPKTR1 2 Tr KPN– Tr NTPKT–+
Tr Cz

˜
K PCz

˜
T K=

Cz
˜

K Q1 2/ K–
T R1 2/ K–

=
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for real symmetric matrices  and . Note that there is not necessarily a unique  for a

given  in (5.5). The gain in problem (5.2) can be found as

(5.7)

where

(5.8)

Similarly, the gain in problem (5.3) can be written as

(5.9)

where

    and    (5.10)

Using Lemma 5.6, one can show that the matrix functions given by equations (5.8) and (5.10) are

equal. Therefore,  and . Note that a strict inequality is used in (5.3)

while a (5.10) is a semidefinite problem. As discussed before, from a numerical point of view,

the strict and nonstrict versions of the inequalities do not make a difference in the solutions.

The main difference between the problems (5.2) and (5.3) — i.e., the inequality condition —

allows one to add additional constraints to the LQR problem. It is clear that the addition of a new

constraint will result in . Therefore, the solution of (5.3) with additional inequality con-

straints is expected to give larger states (though possibly a more robust controller) than a stan-

dard LQR. This concept can also be used to explain the difference between active and semiactive

control. Let  and  be the Lyapunov matrices obtained from the LQR problem with the dis-

sipativity constraint and without it. For  to be equal to , the Lyapunov dissipativity must be

Q1 2/ R1 2/

N

K0    Tr Cz
˜

K P0 K Cz
˜

K
K

minarg=

Ac K A BK–=

P0 K P Ac K P PAc
T K EET+ + 0==
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˜

F S0 F Cz
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F
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S0 K arg  Tr Cz
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K SCz
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T K EET+ + 0
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equal to the mean closed-loop dissipativity, which is practically impossible if higher mean dissi-

pativity is desired. A high dissipativity will result in , i.e., increased states and robust-

ness.

The optimization problem (5.3) is not exactly in the form of the EVP (3.6) since it includes

the multiplicative terms  (i.e., the objective function is not linear), and the first inequality

constraint is a BMI (i.e, the constraint is not convex). To convert the BMI constraint into an LMI

constraint, a new variable  is introduced, and (5.3) becomes

(5.11)

The nonlinear term in the objective function can be represented as the solution to an optimization

(5.12)

where  is an auxiliary parameter. The inequality in (5.12) can be rewritten using the Schur

complement formula

(5.13)

Therefore the problem (5.11) can be written as 

(5.14)

Sd P0

FS

Y FS=

Tr Q1 2SQ1 2 Tr R1 2YS 1– YTR1 2 Tr YN– Tr NTYT–+
Y S
min

subject to  AS BY– SAT YTBT– EET+ + 0,       S ST= 0

Tr R1 2YS 1– YTR1 2
Tr X

X
min

subject to X R1 2YS 1– YTR1 2
=

X

X R1 2/ Y
YTR1 2/ S

0

Tr Q1 2SQ1 2 Tr X Tr YN– Tr NTYT–+
Y S X
min

subject to  AS BY– SAT YTBT– EET+ + 0,       X R1 2/ Y
YTR1 2/ S

0,        S 0
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Problem (5.14) is equivalent to the standard LQR problem defined by (3.8), and the feedback

gain is then given by .

A MATLAB® implementation of the EVP (5.14) using the MATLAB® LMI Control Toolbox

is given in the Appendix.

5.3 Verification of LQR-EVP Equivalence 

In this section, the equivalency of the LQR problem given by (3.9) and the EVP given by

(5.14) is investigated through a simple numerical example. In this example, a general N-DOF

structure is considered where a controller is located in the first story as shown in Figure 5.1. The

mass of each story is taken as 100 tons, the stiffness of each story is selected such that the story

K0 F0 Y0S0
1–= =

DOF = 1

DOF = N

DOF = N-1

Ground acceleration

Figure 5.1 A sample N-DOF structure
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natural period corresponds to 0.5 sec, and a modal damping ratio of 2% of the critical damping is

considered for all modes. A MATLAB® code is provided for generation of the model for this

structure in the Appendix.

As an initial example, a 2-DOF structure is considered. The equivalency of the LQR problem

and the LMI-EVP are verified for a set of design parameters given by 

                      (5.15)

where  and  are the stiffness and mass matrices, respectively. This set of parameters satis-

fies the positive definite inequality (3.11). Table 5.1 shows that the gains and covariance matrices

obtained from LQR and LMI approaches are identical within numerical round-off accuracy.

Also, other weighting matrix sets that satisfy the positive definite inequality (3.11) are observed

to give identical gains and covariances, whereas those not satisfying (3.11) give different results

as the LQR optimization problem is then improper. It is also observed that the two approaches

give different results for some control designs, even though inequality (3.11) is satisfied; for

these designs, it is found that the smallest eigenvalue of  in (3.11) is very close to zero, e.g.,

, which causes numerical problems in the solution.

Q K 0
0 M

= R 10 4–=  m/N N 1  1  1s  1s T=

K M

W

o 10 10–

 Table 5.1: Control gains and covariances matricesa from LMI-EVP and LQR approaches

a. with appropriate SI units

LMI LQR

K 16440.77 8539.46 24199.28 14728.74 16440.77 8539.46 24199.28 14728.74

P
9.86 10–3 1.57 10–2 –3.94 10–17 –4.08 10–5

1.57 10–2 2.56 10–2 –4.08 10–5 –5.33 10–17

–3.94 10–17 4.08 10–5 0.631 0.929
–4.08 10–5 –5.33 10–17 0.929 1.56

9.86 10–3 1.57 10–2 1.57 10–16 –4.08 10–5

1.57 10–2 2.56 10–2 –4.08 10–5 2.36 10–16

1.57 10–16 4.08 10–5 0.631 0.929
–4.08 10–5 2.36 10–16 0.929 1.56
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To investigate the effects of more degrees-of-freedom on the efficiency of the EVP solver,

the analysis explained for the 2-DOF structure above is applied to a shear building with various

numbers of floors. Control design parameters similar to (5.15) are utilized for these structures.

The difference in the LQR and LMI-EVP gains and covariance matrices are observed through

several error indices:

        (5.16)

         (5.17)

Here,  and  are the element-wise minimum of absolute control gain

vectors obtained from the EVP solution and LQR solution, respectively. Similarly, 

and  are the smallest eigenvalues of the covariance matrices obtained from the EVP

solution and LQR solution, respectively. The options vector is selected as [1e–30, 100, –1, 10, 1]

(see the LMI Control Toolbox for details). The rest of the terms are self explanatory. A 2.4 GHz

Pentium 4 personal computer with a 512 MB RAM is used for the simulations. The versions of

the MATLAB® and LMI Control Toolbox used are 6.5.0.180913a and 1.0.8 (R13), respectively. 

The error indices are shown in Figure 5.2, and the time required for the LMI solver to solve

the EVP is shown in Figure 5.3. It is clear that the LMI solver is very efficient for degrees of

freedom smaller than 10, which corresponds to 20 states. However, for larger problems, error and

time efficiency is not adequate. 

It is strongly emphasized that the results provided above are for the structure shown in Fig-

ure 5.1 and cannot be generalized to the LMI-solver software itself. In general, LMI solvers use

E1
min Kij

LMI min Kij
LQR–

min Kij
LQR

-------------------------------------------------------------------= E2
max Kij

LMI max Kij
LQR–

max Kij
LQR

---------------------------------------------------------------------=

E3
min i

LMI min i
LQR–

min i
LQR

----------------------------------------------------------------= E4
max i

LMI max i
LQR–

max i
LQR

------------------------------------------------------------------=

min Kij
LMI min Kij

LQR

min i
LMI

min i
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very complex algorithms for the solution of EVPs, which makes it difficult to comment on the

source of the error level and computational intensity of these results. 

5.4 Dissipativity Constraints

In this section, the dissipativity indices are used to obtain dissipativity matrix inequality con-

straints that are suitable for the LMI-EVP. Among the indices given,  and  cannot be rep-
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Figure 5.2 Error indices E1, E2, E3 and E4 in the LQR-EVP equivalency study
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resented in a manner suitable for the LQR problem since they are deterministic. To find a

constraint for ,  is represented in a form suitable for the EVP first. Let the velocity of the

system at the point where the damper exerts force be given by . Since the LQR control

force is a feedback force as ,  can be written as

. (5.18)

Using the state covariance matrix , a constraint for  is obtained as

     where    (5.19)

Using the same notation, a constraint for  is found as

. (5.20)
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Figure 5.3 Time required for the LMI solver to solve the EVP for various degrees of freedom
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Similarly, a constraint for  is given by

    where   (5.21)

Clearly, the conditions given by

(5.22)

are more desired as the primary control force is more likely to dissipate energy for these values. 

The constraints given by (5.19), (5.20) and (5.21) should be represented in terms of

Lyapunov matrices to be used in the EVP. In the following, (5.20) and (5.21) are represented in

terms of Lyapunov matrices. The Dp-based constraint is not considered further since it includes a

sinusoidal function and is not suitable for the EVP by nature.

5.4.1 De-Based Dissipativity Constraint

To find a -based dissipativity constraint that can be appended to the EVP, (5.20) should be

represented in terms of a Lyapunov matrix, which will be designated as  herein. The introduc-

tion of  requires the addition of the equality constraint given by

(5.23)

However, if the equality constraint (5.23) is enforced in the EVP, the EVP will no longer be an

LMI problem and cannot be solved by available techniques. Therefore, the equality constraint is

relaxed, and the following constraint is used:

(5.24)

There are several advantages and disadvantages of this constraint. First of all, (5.24) does not

fully represent the index  since the equality constraint (5.23) is dropped. Also, the term

Dne

FPCv
T–

FPFT CvPCv
T

------------------------------------------ ne 1– ne 1

0.5 p 1,       e 0 ,      1– ne 0

De

Se

Se

A BF– Se Se A BF– T EET+ + 0=
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 is not a normalized index. However, this constraint simply allows a numerical solution

to this sophisticated multiobjective problem, which is actually the fundamental philosophy

behind the LMI-EVP approach.

5.4.2 Dne-Based Dissipativity Constraint

To find a -based dissipativity constraint that can be appended to the EVP, (5.21) has to be

represented in terms of a Lyapunov matrix, which will be designated by , and the following

equality constraint has to be introduced:

(5.25)

Similar to the discussion given for the De-constraint, this equality constraint is relaxed to have a

solvable EVP and the following constraint is obtained:

    where   (5.26)

The constraint (5.26) is a nonlinear inequality constraint and, therefore, constitutes a very

major challenge. Due to the complexity of this constraint, an equivalent LMI (or BMI) may not

be available. Therefore, a numerical solution of the EVP with the constraint (5.26) is not guaran-

teed by the available solution techniques used for LMIs. In fact, substantial research may be

required for the development of new techniques specific to (5.26) to obtain an at-least-local solu-

tion, which is out of the scope of this study. Instead, an iterative method is proposed to imple-

ment (5.26) with the EVP defined above. This method will be introduced in the following

chapter.

FSCv
T–

Dne

Sne

A BF– Sne Sne A BF– T EET+ + 0=

FSCv
T–

FSFT CvSCv
T
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5.5 Summary

In this chapter, an LMI-based EVP is derived to represent a standard LQR problem. The dif-

ference between these two representations is that the constraints are represented in terms of

matrix inequalities in the EVP, while the LQR has equality constraints. Then, the equivalency of

the proposed EVP to original LQR is shown by a numerical example. It is observed that for

large-order systems, the LMI solution may not be efficient due to numerical errors and computa-

tional time cost. Finally, two of the dissipativity indices are represented in terms of matrix ine-

qualities suitable for the LMI-EVP.
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CHAPTER 6

DISSIPATIVITY ANALYSIS OF SIMPLE 2-DOF SYSTEMS

6.1 Introduction

This chapter consists of two main parts. In the first part, two numerical examples are investi-

gated to understand how dissipativity characteristics of a semiactive system are related to the

overall semiactive performance using the LMI-EVP with the De-dissipativity constraint. The

first example is a simple two-degree-of-freedom shear structure where an ideal smart damper is

placed in the first story. The second example is a simple highway bridge model with a rubber

bearing and an MR damper between the superstructure and the substructure. For each example, a

set of LQR controller parameters is defined, and the structural system is analyzed numerically

for white noise excitations, with and without the De-dissipativity constraint (5.24). The perfor-

mances and dissipativity characteristics are presented graphically. The control systems investi-

gated for the 2-DOF building and bridge models are summarized in Table 6.1 and explained

below.

• Act-LQR: This is a theoretical fully active system. A fictitious fully active actuator is used

instead of a smart damper. Standard LQR is used to command the actuator.

• Act-LMI: This system is also a theoretical fully active system. A fictitious fully active actua-

tor is used instead of a smart damper. The proposed LMI-EVP controller with the dissipativ-

ity constraint is utilized instead of the standard LQR to observe how the added dissipativity

constraint changes the dissipative nature of the active control force.
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• SAct-LQR: This is a semiactive system where a smart damper is used. A two-stage clipped

optimal control strategy is utilized to command the smart damper. The primary controller in

the clipped optimal control is a standard LQR controller.

• SAct-LMI: This is also a semiactive system where a smart damper is used. A two-stage

clipped optimal control strategy is utilized to command the smart damper. The primary con-

troller in the clipped optimal control is the proposed LMI-EVP controller with the dissipativ-

ity constraint.

In the second part, an iterative method to solve the LMI-EVP with the Dne-dissipativity con-

straint is proposed, and the 2-DOF building is used to test the method. Graphical results are pro-

vided for this study.

6.2 LMI-EVP with the De-Based Constraint

In this section, the LMI-EVP problem with the De-based constraint is considered. The modi-

fied LQR is given by

(6.1)

 Table 6.1: A summary of the systems analyzed in the numerical examples

Systems Control
Device

Control
Strategy

Primary
Controller

Act Fully Active LQR — Not Incl.

Act-Dis Fully Active LMI-EVP — Included

SAct Smart Damper Clipped Opt. LQR Not Incl.

SAct-Dis Smart Damper Clipped Opt. LMI-EVP Included

FSCv
T– e

L<

Tr Q1 2SQ1 2 Tr X Tr YN– Tr NTYT–+
Y S X
min

subject to  AS BY– SAT YTBT– EET+ + 0,    X R1 2/ Y
YTR1 2/ S

0,      S 0,

                   and YCv
T– e

L
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The feedback gain is then given by , where ,  and  are the solutions

of the problem (6.1). The goal in the dissipativity analysis is to obtain controllers with various

 values.

6.2.1 Numerical Example: A 2-DOF Building Structure 

The 2-DOF shear building model shown in Figure 6.1 is considered as the first numerical

example. The equation of motion and the state-space representation of the equation of motion are

straightforward and will not be given here. The floor masses  and  are 100 tons. The stiff-

nesses  and  are selected such that the story periods are 0.5 secs. Similarly, the floor damp-

ing coefficients are found by setting the modal damping ratios to 2%. An ideal smart damper is

attached between the first floor and the ground. 

A control design to be used in the dissipativity analysis is defined as follows. The output vec-

tor to be minimized is selected to be the drifts of each story and the absolute accelerations of each

floor, . The control design parameters are selected as

K0 F0 Y0S0
1–= = Y0 S0 X0

e
L

m1 m2

k1 k2

damper

m1

m2

k1, c1

k2, c2

Ground acceleration

Figure 6.1 A 2-DOF building

z x1   x2 x1–    x··1abs   x··2abs T=



66

                      (6.2)

This set of parameters allows one to choose the relative importance of the drift and absolute

acceleration responses. The normalization frequency  is taken as 10.5 rad/sec; this value is

found such that the drift and absolute acceleration portions of the term  give the same

values for ( , ) in active control.

As a first attempt, a MATLAB® code is written where the dissipativity constraint (5.24) with

several values of  is simply appended to the LMI-EVP to obtain the smallest possible value of

 for a given set of control design parameters. During this initial study, it is found that one of

the parameters of the MATLAB® LMI solver, known as feasibility radius , affects the results

considerably.  creates a limit for the Euclidian magnitude of the EVP parameter  (see ine-

quality (4.8) above) for numerical efficiency. It is observed that for a given , different values

of the feasibility radius yield different dissipativity levels. This is a natural consequence of the

dissipativity constraint (5.24), which includes a term that is not normalized. Therefore, a para-

metric study is carried out to find the  pair that yields the smallest  for each control

design. The resulting  values are then employed in the dynamic analysis of the 2-DOF

structure excited by an artificial white noise signal for the corresponding control designs. The

performance of the structure is investigated using three indices given by 

,       and   (6.3)

where, for a discrete time history ,  is defined by
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(6.4)

The following results are obtained for  and several values of  ranging from  to

 as it is found that these sets of controllers yield the best performance after some test simula-

tions.

Figure 6.2 shows the dissipativity characteristics of the controllers for the 2-DOF building

structure, where the terms  and  are obtained using stochastic analysis for a white noise
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excitation with unit intensity. Figure 6.3 shows  and  plots where the structure is excited

with a 50 sec white noise signal. The white noise is normalized by a factor of  to have

response magnitudes consistent with the structural properties. Figure 6.4 shows the displacement

and acceleration indices for the semiactive systems. In all of the above plots, the performance

indices are normalized with the corresponding uncontrolled system indices. The difference in the

RMS control force scales in Figure 6.2 and Figure 6.3 is due to the normalization of the white

D% J
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Figure 6.3 D% and normalized J plots for the 2-DOF building from the simulations for a 
white noise excitation
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noise. In the discussions below, the RMS control force scale of Figure 6.3 is used. Note that the

control force term in the index  is not used for the uncontrolled structure. The following obser-

vations are made: 

• For practical control force levels ( N in Figure 6.3) the dissipativity of the control-

ler is very high for this particular structure and control design.

• It is observed that the variation of  is not similar to the variation of  for the active sys-

tem (Act), i.e., for small control force levels  is low while  is high. This difference

can be attributed to the magnitudes of the RMS control force and RMS velocity used as nor-

malization coefficients in the computation of . Therefore, although a high value of 

indicates highly dissipative control forces, the corresponding control design may not be suit-

able for practical purposes due to low control force levels.

• The LMI method improves  and  for a given . This is more clear for

N. However, the best improvement in  is for N. Moreover, it
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Figure 6.4 Detailed plots of normalized Jd and Ja of the 2-DOF building from the simulations 
for a white noise excitation
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is observed that the LMI method improves the drift performance about 25% for

N. This improvement is not clear on the overall performance index .

• Another difference between  and  is that the highest value of  corresponds to RMS

control force levels of N, while this range is N for . Also

observed is the similarity between  and  (note that the  plot should be flipped

vertically to visualize this similarity).The LMI method narrows the range of possible 

values for the control designs. This is a very useful property in the design process. In general,

one must do a comprehensive parametric study, which may include computationaly expen-

sive nonlinear analyses, to find the best  pair for a given . The LMI method and the

dissipativity indices may give a good sense of the achievable semiactive performance letting

the designer to avoid simulations that will not yield better results.

• The plot of overall performance index shows a high similarity to the  plot. Therefore, for

this example  is more useful to guess the best control design.

• The indices proposed in this dissertation are very helpful to understand the dissipative nature

of the primary control force and the semiactive performance of this example. The LMI

method is able to modify the dissipativity characteristics of the controller so that the semi-

active performance is improved. Two critical designs are located. The first design corre-

sponds to N, and the LMI method improves the indices  and  though it

is not the best semiactive design. The second design point is for N, which has

the best semiactive performance and the highest improvement in . The results for these

two designs are summarized in Tables 6.2 and 6.3. Therefore, each index exhibits a different

characteristic of the control force and may be useful to understand different problems. 

uRMS 104.8 J
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6.2.2 Numerical Example: 2-DOF Highway Bridge Model

The bridge model, given by Erkus et al. (2002) and shown in Figure 6.5, is used as the sec-

ond example. In this model, the mass ratio, damping ratio and natural period of the pier are

,  and 0.5 sec, respectively. The mass of the pier is ton. The bearing

stiffness is N/m, which is computed using a formula for optimal stiffness (Erkus et

al. 2002). For active control, the damping of the bearing is assumed to be zero and for the uncon-

trolled structure it is taken as 196 kN.sec/m. If the design goal is to reduce the pier response

using a damper attached between the pier and the deck, a particular control design may yield low

 Table 6.2: Indices for design uRMS = 104.2 N

De (Nm/s) Dne D% Jd Ja

Act –7.983 104 –0.966 0.917 - -

Act-Dis –8.043 104  –0.997a

a. Highest dissipativity achieved.

 0.974a - -

SAct - - 0.917 0.283 0.273

SAct-Dis - -  0.974a 0.258 0.269

 Table 6.3: Indices for design uRMS = 104.8 N

De (Nm/s) Dne D% Jd Ja

Act –9.073 104 –0.652 0.721 - -

Act-Dis   –9.229 104 a

a. Highest dissipativity achieved.

–0.763 0.765 - -

SAct - - 0.760 0.160 0.135

SAct-Dis - - 0.793  0.129b

b. Highest performance achieved.

0.134

m2 m1 5= 5% m1 100=

7.685 106
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dissipativity levels, and the damper cannot mimic the primary control force efficiently (Erkus et

al. 2002). Note that this dissipativity characteristic is also observed by Inaudi (2000) in an ana-

lytical study. The mathematical model is already given by Erkus et al. (2002) and will not be

repeated here. The damper in the original paper (Erkus et al. 2002) is an MR fluid damper and

the mathematical model of a prototype small-scale MR fluid damper is used in the analysis. This

study, however uses a more realistic damper model, which is obtained for a 20-ton MR fluid

damper (Yang et al. 2002). In the analysis, the damper force is amplified by a factor of 3 to be

able to exert forces commanded by the primary control force (in a practical application a 60-ton

damper would be used). The equivalency of the LMI-EVP and LQR problem is tested for this

example using several control design parameters. It is found that the two methods yield identical

results when the dissipativity constraint is not employed and condition (3.11) is satisfied.

In this example, N.m and the control design parameter  is selected such that

the term  represents an energy quantity; i.e.,

(6.5)

m1

m2

x2

x1Rubber
Bearing
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Deck Deck

Damper

Figure 6.5 2-DOF modelling of the highway bridge (Erkus et al. 2002)
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where  determines the relative importance of the pier and the bearing responses. In this exam-

ple,  is selected, which results in LQR controllers with low dissipativity levels. Using

this particular controller design, the LMI-EVP problem is solved for several values of  to

increase the controller dissipativity. After some test simulations,  is used. The

results are graphed using a normalized dissipation rate . 

Figure 6.6 shows the dissipativity and performance characteristics of the LMI-EVP control-

ler for various values of , which is obtained by standard stochastic analysis. In these plots, the

values are normalized by the corresponding standard LQR controller values. Figure 6.7 shows

the dissipativity nature of the controllers and performance of the systems for both active and

semiactive systems excited by the white noise signal used in the first example. In these plots, the
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RMS response values are normalized with the corresponding RMS values of an uncontrolled

structure given by Erkus et al. (2002), and the maximum control force values are normalized by

the total weight of the structure. The following points are observed:
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• As seen in Figure 6.6, the LMI method improves the dissipativity index  even though a

weak form of the dissipativity constraint is used. On the other hand, the index  indicates a

reduction in the mean energy flow rate. It is also observed that there is an improvement in the

drift index for  although this is not anticipated. In the design process, this point may

be considered more suitable for a semiactive design.

• The simulation results given in Figure 6.7 show that improving dissipativity characteristics

makes a very minor improvement on the semiactive drift performance. There are several rea-

sons for this result. First, Act-Dis performance does not improve; indeed,  increases

considerably. Second, the damper is not an ideal smart damper and has very nonlinear

dynamics. It is not as efficient as an ideal smart damper in applying the required force.

• A more interesting observation that effects the semiactive performance is that the dissipativ-

ity index  of the active system reduces to  for the semiactive system.

The main reason for this reduction is inability of the MR damper to apply nondissipative

forces. The active controller with  requires nondissipative forces, probably ones

that inject energy into the structural system. During the simulation, the damper will not be

able to mimic the active control force since it cannot exert nondissipative forces. Therefore,

the response of the semiactive system will be considerably different from a corresponding

fully active system response. In this case, the primary controller (standard LQR) will com-

mand forces that inject even more energy than in the active case to push the semiactive

response path back towards the fully active response path. This will yield control forces with

lower dissipativity than expected. (Obviously, if an ideal smart damper model were used, this

effect will not be as significant as in the MR fluid damper case.) Therefore, it can be con-

cluded that the use of semiactive devices to implement very nondissipative control designs

Dne

De

c 0.15

x1 RMS

D% 52% D% 25%
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may reduce the semiactive performance in two ways: first, performance reduction due to low

dissipativity; second, additional dissipativity reduction due to the inability of the damper to

mimic a nondissipative control force.

• Although the LMI approach improves the dissipativity, it cannot compensate for the severe

reduction caused by the damper effect described above, and its benefits are not observed on

the final semiactive performance.

• The benefit of improved dissipativity is the lowered control force levels implemented by the

damper. About 20% reduction occurred on the maximum control force required for

 to achieve the same drift performance. It should be noted that there may be

other control design parameter sets that gives the same performance improvement, though a

comprehensive and time consuming parametric study would be required to search for the

existence of such sets. On the other hand, the proposed LMI method allows one to achieve

the same performance without an extensive and time consuming study.

6.3 LMI-EVP with the Dne-Based Dissipativity Constraint

In this section, an iterative method to solve the LMI-EVP with the Dne-based dissipativity

constraint is proposed:

(6.6)

The iterative procedure starts with an initial guess of  and  for the dissipativity constraint.

Lets denote these matrices by  and . Then, the following problem is solved:

c 0.6 0.8
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L where 1– e

L 1

F S

F0 S0



77

(6.7)

Problem (6.7) is a LMI-EVP and can be solved for  and  for a given . Lets

denote this solution by  and . In the next step, the (6.7) is solved again, where  and 

is replaced with  and . Therefore, the following problem is solved at the -iteration

(6.8)

and  and  are obtained.

It should be noted that the procedure defined above utilizes LMI procedures for a nonlinear

matrix inequality problem and should not be considered as a sound alternative to the algorithms

proposed for the solution of bilinear and/or nonlinear matrix inequality problems.

6.3.1 Numerical Example: A 2-DOF Building Structure

 The 2-DOF building structure investigated in the previous section is used in this example

also. LQR control parameters are selected to be the same as in Section 6.2.1. The iterative

method is implemented for a wide set of control designs and dissipativity goals. The control

designs are selected as  and values of  ranging from  to . Several values

between  and 0 are considered for . For each (( , ), ) pair, the iterative method is

Tr Q1 2SQ1 2 Tr X Tr YN– Tr NTYT–+
Y S X
min

subject to  AS BY– SAT YTBT– EET+ + 0,       X R1 2/ Y
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0,        S 0,
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used to solve the EVP. Initial values of F and S are taken as K and P, respectively, i.e., solution of

the LQR problem without a dissipativity constraint. Similar to the previous section, the goal in

the dissipativity analysis is to find controllers with various Dne values.

The numerical simulations show that the iterative method converges to a single solution for

each control design and 10 iterations yield acceptable results for the 2-DOF system.

Figure 6.8 shows the  and  values obtained from the iterative method. In this figure,

 is used to emphasize that this value is the value used in the iterative method, and  and

 are the dissipativity indices that are calculated with the converged Lyapunov matrices 

and , respectively, instead of the covariance matrices  and . Also, the RMS control

force is normalized with the weight of the structure, . The -surface shows that the itera-

tive method successfully enforces high dissipativity levels in the Lyapunov sense, i.e., as 

is moved closer to , which is a purely dissipative controller in the Lyapunov sense, 

reaches negative values of very large magnitudes. The -surface provides two important obser-

vations. First, it shows that the iterative method successfully implements the nonlinear matrix

inequality problem. To elaborate, consider a value for , e.g., –0.5. The value of  that

corresponds to  is very close to –0.5 for the normalized RMS control forces

larger than 0.1. Second, the controllers with normalized RMS control forces smaller than 0.1

already have high dissipativity values in the Lyapunov sense. Figure 6.9 shows the actual values

of the dissipativity indices of the controllers. It is evident that there is no change in the dissipativ-

ity indices  and  for the values of  that are close to .

In summary, the results presented in Figures 6.8 and 6.9 show that while the iterative method

successfully modifies the Lyapunov dissipativity of the system, it does not effect actual dissipa-
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tivity of the system. One important reason for this result is that the optimization problem does

not enforce the equality constraint

(6.9)

which was dropped to have a solvable LMI-EVP. It is also found that performance of the control-

lers with and without the Dne-based constraint are same.

6.4 Summary

In the first part of this chapter, the proposed LMI-EVP and De-based dissipativity index are

employed for two numerical examples: a highly dissipative control design for a 2DOF frame

structure with an ideal damper and a minimally dissipativity control design for a 2DOF model of

an highway bridge with a realistic MR fluid damper model. In the first example, the dissipativity

indices were very useful for understanding different characteristics of the controller, and the pro-

posed LMI approach was able to improve drift performance of the controller even though a weak

form of the dissipativity constraint is employed. In the second example, although the LMI

method was able to improve the dissipative nature of the primary controller, this improvement

was not reflected in the final semiactive performance efficiently since the use of a realistic

damper model with a nondissipative primary controller further lowers the original dissipativity.

In the second part of this chapter, the EVP with the Dne-constraint is solved with an iterative

method. While the method improves the Lyapunov dissipativity, it does not effect the actual dis-

sipativity as the equality constraint that equalizes the Lyapunov matrix to the state covariance

matrix is ignored in the solution.

A BF– Sne Sne A BF– T EET+ + 0=
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CHAPTER 7

DISSIPATIVITY-BASED PERFORMANCE ANALYSIS OF 

THE SMART BASE ISOLATED BENCHMARK BUILDING 

7.1 Introduction

In the previous chapters, several dissipativity indices are introduced to quantify the dissipa-

tive nature of a control force and employed to investigate dissipativity-performance relations in

two simple 2-DOF structures. Moreover, a proposed LMI-based optimization method is shown to

be successful in improving the dissipative nature of a 2-DOF semiactive system and to be helpful

in selecting controllers well suited for a smart damper. From a theoretical point of view, the

results are very helpful to understand the phenomena and identify performance issues due to the

dissipative nature of smart dampers even though the examples are based on simple structural sys-

tems.

The next step in this study is to investigate dissipativity-performance relations in a realistic

structural engineering control problem. A realistic problem consists of many challenges such as a

complex mathematical model with a large number of degrees of freedom, three-dimensional

behavior with torsional deformation, effects of sensor and observer dynamics, realistic damper

models, possible nonlinear behavior of structural members and, the most important challenge,

different earthquake characteristics. In fact, these are not only specific to a semiactive control

problem, but are also encountered in any structural engineering problem. Addressing these issues

separately requires a considerable amount of work; therefore, the scope of this study is kept in

the boundaries of the applicability and efficiency of the proposed indices and methods for a com-

plete and complex structural engineering problem defined above.
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A good example of a realistic structural control problem is the smart base isolated bench-

mark building (Narasimhan et al., 2006), which was introduced by the ASCE Technical Commit-

tee on Structural Control. The goal in the base isolated benchmark building study is to evaluate

control methods and technologies that are developed for base-isolated buildings. There are two-

phases of this study, where the first phase concentrates on the benchmark structure with a linear

isolation (Nagarajaiah and Narasimhan, 2006), and the second phase concentrates on the bench-

mark structure with a nonlinear isolation (Erkus and Johnson, 2006). Both of these phases pos-

sess various facets of a practical structural control problem that are discussed above and,

therefore, are useful for this study.

In this chapter, first a review of the benchmark structure is given. Only, the mathematical

model of the structure with a nonlinear isolation is provided since obtaining a model of the linear

structure is straightforward from the nonlinear model. Then, both linear and nonlinear structures

are investigated in the context of dissipativity-performance relationships. In this investigation, an

LMI-EVP-based dissipativity analysis is not carried due to the time-inefficiency and accuracy

issues associated with the LMI solver for large systems. Even in its simplified form, the bench-

mark structure model is very complex, and the LMI solver is not expected to be efficient for this

problem.

7.2 Smart Base Isolated Benchmark Structure

In this section, a brief review of the benchmark structure and its mathematical modelling is

given. For further information, the reader is referred to the problem definition paper (Narasimhan

et al. 2006).
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7.2.1 Review

The benchmark structure is an eight-story frame building with steel braces. Stories one to six

have an L-shaped plan while the higher floors have a rectangular plan. The superstructure rests

on a rigid concrete base, which is isolated from the ground by an isolation layer, and consists of

linear beam, column and bracing elements and rigid slabs (Figure 7.1). Below the base, the isola-

tion layer consists of a variety of 92 isolation bearings. Benchmark participants are allowed to

modify the properties of the isolation bearings, as well as add passive, active or semiactive

devices between the ground and the base. The details of the isolation layer used in this study are

given later in this section.

7.2.2 Mathematical Model

The mathematical model of the benchmark structure is complicated and cannot be used

directly for control design. Therefore, the model is reviewed and developed here in a manner that

Superstructure

Rigid
Base

 Bearings

 Ground

Figure 7.1 A representative figure of the benchmark structure
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is somewhat more amenable for control design. The isolated building is modeled in two parts: (1)

the superstructure, which consists of the eight-story structure above the base; and (2) the base,

isolation bearings and any additional control devices.

The superstructure is linear, and the slabs are assumed to be rigid. The response of each story

is characterized by three degrees-of-freedom (DOFs) — two horizontal DOFs and one rotational

DOF — located at the center of mass of the corresponding floor. Thus, the superstructure finite

element model is condensed to a 24 DOF model. The superstructure equation of motion can be

written as

(7.1)

In this equation,  is the  displacement vector of the

superstructure where ,  and  are the displacements in the horizontal  and –directions

and the rotation of the mass-center of the  floor with respect to the base, respectively; , 

and  are the mass, proportional damping and stiffness matrices of the superstructure, respec-

tively;  is the  absolute acceleration of the base (acceleration in the  and –directions

and the rotational acceleration), and  is the influence coefficient matrix. Let  be the mass-

normalized eigenmatrix of the superstructure. The equation of motion can be written in modal

form as

 (7.2)

where  is the modal response vector of the superstructure with respect to the base, and

. Also,
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(7.3)

where  and  are the modal frequency and damping ratio of the  mode, respectively.

The base is modelled with three degrees-of-freedom located at the center of mass of the base:

displacement in the horizontal – and –directions and the rotation about the vertical –direc-

tion. There are four types of external forces exerted on the base: resultant isolator force, resultant

controller force, shear force caused by the superstructure and inertia force induced by the ground

acceleration.

The resultant isolator force is found by transferring the bearing forces to the center of mass

of the base. The bearings apply forces only in the – and –directions, possibly with biaxial

interaction. Yet, when these forces are transferred to the center of mass of the base, they may

have rotational effects. The bearings may have linear or nonlinear behavior. The linear bearings

are represented with linear stiffness and damping. The nonlinear bearings, which are displace-

ment and/or velocity-dependent, are represented in a nonlinear isolation force vector. The active

and semiactive devices are assumed to apply forces either in the  or –direction and may cause

rotational force effects when they are transferred to the center of mass of the base. The equation

of motion of the base is then given by

(7.4)

where  is the displacement vector of base mass-center with respect to the

ground; ,  and  are the  mass matrix of the base, and the damping and stiffness

matrices of the linear isolators, respectively;  is the influence matrix;  is the  abso-

lute ground acceleration vector ( – and –directions);  and  are the  effective con-
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troller and nonlinear isolator force vectors acting on the base-mass-center, respectively; and 

is the superstructure shear force given by

(7.5)

An equation of motion of the whole structure can be obtained by combining equations (7.2),

(7.4) and (7.5) as

(7.6)

where  and the corresponding state-space form is given by

(7.7)

where  is the  controller force vector, and  is the  nonlinear isolation force vec-

tor. Here,  and  are the number of the controllers and the number of the nonlinear bearings,

respectively.

The measurement and output equations used in the numerical simulations are given by

(7.8)

where  is the noise vector. In this dissertation, the measurements are absolute accelerations of

the center of mass of each floor and base, absolute ground accelerations and controller displace-

ments relative to the ground. All of the measurements are in the – and –directions. The out-

puts to be minimized are selected to be the drifts of the isolators in the corners and the absolute

floor accelerations.

In the following, the details of the equations derived above are given. The state space matri-

ces in equation (7.7) are given as
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(7.9)

where

(7.10)

Here the superstructure mass matrix is , and base

mass matrix is . The damping and stiffness matrices of the substruc-

ture are given by

(7.11)

where  and  are the  damping and stiffness matrices of the  bearing. In the bench-

mark problem, the bearings have only axial force components. Therefore the third column and

row of each  and of each  are zero. Also note that, although the vector  in equation (7.7)

is a  vector, its rotational components are zero. The other matrices are given as

(7.12)
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(7.13)

where  and  are the coordinates of the  controller and bearing, respectively,

relative to the center of mass of the base.

Consider the evaluation output equation in (7.8). The outputs considered are the corner isola-

tor drifts and absolute floor accelerations, . Here, the corner isolator

drifts are formed as follows:

(7.14)

where  and  are the drifts of the  corner of the  floor in the  and –directions,

respectively. The absolute acceleration vector is .

The state-space equation matrices for this set of outputs are given by

(7.15)

where

(7.16)
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(7.17)

where

(7.18)

and  are the offset coordinates of the center of mass of the  floor with respect

to the center of mass of the base. Also,

(7.19)

where  are the coordinates of the  corner of the  floor in the  and –directions,

respectively. Here, it is assumed that number of corners for all floors are same and equal to .

If they are not equal,  should be modified appropriately. Other state-space matrices, such as

matrices of the measurement equation, can easily be derived using above information.

7.2.3 Isolation Elements

As mentioned before, two types of the benchmark structure are considered in this disserta-

tion: linear and nonlinear. The major difference between these two structures is the isolation

layer elements.
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The linear benchmark structure has a linear isolation layer, which consist of 91 linear elastic

rubber bearings. Linear bearings have linear stiffness and linear damping. The locations of the

isolators are given in the benchmark definition paper (Narasimhan et al., 2006).

The nonlinear benchmark structure has a nonlinear isolation layer, where the nonlinear isola-

tors are selected as 31 linear elastomeric rubber bearings and 61 lead-rubber bearings. The loca-

tions of the lead-rubber bearings are the same as the locations of the sliding friction bearings in

the definition paper (Narasimhan et al., 2006). The linear elastomeric bearings are modelled with

a linear stiffness and a linear viscous damping. The lead-rubber bearings are modelled with a

bilinear hysteretic stiffness and a linear viscous damping. 

A simplification in the modelling of the isolators is used as follows (see Figure 7.2): Let the

linear stiffness of the elastomeric rubber bearings be . Let the preyield and the postyield stiff-

ness of the lead-rubber element be  and , respectively. The lead-rubber bearing can be con-

sidered as a combination of two elements: (1) the rubber, which can be modelled as a linear

stiffness element with stiffness , and (2) the lead that can be modelled as an elastic-perfectly-

plastic stiffness element with a preyield stiffness  and a zero postyield stiffness. In this

paper, it is assumed that the stiffness of the rubber in the lead-rubber bearings is equal to the stiff-

ness of the elastomeric rubber bearings, that is . Finally, this simplification leads to a total

of 92 linear stiffness elements with stiffness  and 61 elastic-perfectly-plastic elements with

preyield stiffness  and zero postyield stiffness (Figure 7.3). The 92 linear elements are

represented in the matrix  and 61 elastic-perfectly-plastic elements are represented in  of

equation (7.4). Similarly, 92 linear viscous damping elements for rubber bearings are represented

in . 

k
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The stiffness and damping values for the isolators are given in the benchmark problem defi-

nition paper and are as follows: the yield displacement, the preyield and postyield stiffness of the

lead-rubber bearings are given as 2.388cm, 6466.100 kN/m and 919.422 kN/m, respectively. The

stiffness of the elastomeric rubber bearings are given as 919.422 kN/m. The damping for both of

the elements is taken as 101.439 kN·s/m. Therefore, the analysis and the design stages use 92 lin-

ear rubber elements with a stiffness of 919.422 kN/m and a damping of 101.439 kN·s/m, and 61

lead-plugs with a preyield stiffness of 5546.678 kN/m and zero postyield stiffness. 

k1

k2

k1

 f

x

 f

x

 f

x
(k1-k2)

k2

Bilinear

Linear Elastic-perfectly-plastic

Figure 7.2 Simplification of the bilinear model
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31 Elastomeric Rubber Bearings

31 Linear Stiffness 
+

31 Linear Damping 

61 Lead-Rubber Bearings

Lead Rubber

61 Elastic-perfectly-plastic 
+

Zero Damping 

61 Linear Stiffness 
+

61 Linear Damping 

Figure 7.3 Modelling of the rubber and LRB bearings
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7.2.4 Controller Design

In the study of the benchmark structure, an LQR control strategy is utilized along with a

Kanai-Tajimi filter and a Kalman estimator, which results in a linear quadratic Gaussian (LQG)

controller. For the sake of completeness, the overall control strategy is reviewed here. Please

note that the control strategy given below is based on a linear structure, yet it will also be used in

the control of the nonlinear benchmark structure, where an equivalent linear model of the struc-

ture is obtained through an iterative method.

Let the state-space representation of the equation of motion, the measurements and the eval-

uation output to be minimized of a linear benchmark structure be given as

(7.20)

where  is the state vector and  is the control force. The measurements are absolute floor

accelerations, absolute ground accelerations and controller drifts. The outputs to be minimized

are drifts of the isolators at the corners and absolute floor accelerations. As a first step to obtain a

system to be used in the LQG design, a Kanai-Tajimi filter (Soong and Grigoriu, 1993) given by

(7.21)

is concatenated to the system (7.34) as shown in Figure 7.4 in both  and –directions to model

the ground motion as 

(7.22)
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to obtain an augmented system given by

(7.23)

to be used in the LQG design. In this equation,  and  are band-limited white noise stochastic

vector processes modelled as discrete-time Gaussian pulse processes with disturbance covari-

ance given by . Based on a previous study by Ramallo et al.

(2002), the parameters in (7.21) are selected as  and  rad/sec, for which the

Kanai-Tajimi filter represents the ground motion of some commonly-used near- and far-source

earthquake records. In the design of the LQ controller and Kalman filter, the augmented system

is used as the plant.

The goal of a standard LQG controller is to find a control gain  that satisfies the following

optimization problem:
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Figure 7.4 The augmented plant and the LQG controller
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(7.24)

where ,  and  are weighting matrices, and  is the Kalman estimate

of the states.

Two sets of weighting matrices are selected for the linear and nonlinear benchmark structure:

1. Weighting matrices for the linear benchmark structure: The control design parameters

,  and  are selected as follows:

(7.25)

where

(7.26)

and

(7.27)

where  and  are the relative importance of the drifts of the  corner of the

base in the – and –directions, respectively;  and  are the relative importance

of the absolute accelerations of the mass-center of the  floor in the – and –direc-

tions, respectively;  is the number of corners considered at the base; and  and 
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are the frequencies of the dominant modes in the – and –directions, respectively. The

frequencies are included in the weights to normalize the acceleration weights to be com-

patible with the displacement weights in units and of similar magnitude. This set of

parameters reduces the control design problem to a choice of the parameters  and ,

which determine the relative importance of the corner drifts and absolute floor accelera-

tions.

2. Weighting matrices for the nonlinear benchmark structure: The control design parameter 

 is given as

(7.28)

and, , ,  and  are same as the values given in the linear case. While a different 

is used for the nonlinear structure, it is clear that any control design represented by (7.25)

can also be represented by (7.28).

The states are estimated using a Kalman filter. Given that , 

and , the Kalman filter finds an estimate of the states  that minimizes the cova-

riance of the steady state error in the states given by

(7.29)

Let the magnitude of the sensor noises be on the order of  percent of the measurements

without noise. Then,

(7.30)

where state covariance matrix  is the solution of the following Lyapunov equation
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(7.31)

In this study, the common assumption of uncorrelated excitation and sensor noise, i.e., ,

is held. The schematic representation of the controlled structure is given by Figure 7.4.

In this study, controllers are placed at the corners and center of mass of the base as shown in

Figure 7.5. At each location, there are two controllers — in the – and –directions.

7.2.5 Performance Indices and Earthquake Ground Motion Data 

There are various performance indices defined in the benchmark problem definition paper

(Narasimhan et al., 2006). In addition to these indices, two new indices are introduced in this
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Figure 7.5 Locations of the controllers; at each point there are two controllers.
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study. These are summarized in Table 7.1. All indices are normalized with the corresponding

uncontrolled system indices, except indices ,  and . In both linear and nonlinear bench-

mark structures, the uncontrolled structure is the uncontrolled nonlinear benchmark structure as

this will allow comparison to a realistic isolation system used in engineering practice. Index 

is the peak control force that is transferred to the center of mass of the base and normalized by

peak base shear, while index  is the peak control force normalized by the weight of the struc-

ture.  is the total energy absorbed by control devices normalized by the energy input into the

structure by the ground motion.

 Table 7.1: Definitions of the performance indices

J Definition

J1 Peak Base Shear

J2 Peak First Floor Shear

J3 Peak Base Drift

J4 Peak Interstory Drift

J5 Peak Absolute Floor Acceleration

J6 Peak Controller Force

J7 RMS Base Drift

J8 RMS Absolute Floor Acceleration

J9 Energy Absorbed by the Control Devices

J10 Peak Controller Forcea

a. This index is different than J6. Please 
see Section 7.2.5.

J11 RMS Floor Drifts

J6 J9 J10

J6

J10

J9
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The performance index , the energy absorbed by the control devices, is important in this

study since it can be considered as another type of deterministic dissipativity index. In the

numerical studies, similarity of  to the other dissipativity indices is also investigated.

Seven earthquake ground motion data with two components — fault-normal and fault-paral-

lel — are used in the numerical simulations. These are summarized in Table 7.2. Details of these

data can be found in the benchmark definition paper (Narasimhan et al., 2006).  

7.2.6 Design Considerations

As in any control design, control of the benchmark building is also a trade-off problem.

Since it would be impractical to concentrate on all of these indices, two major indices are consid-

ered to be important in this study:  and , i.e., the peak base drift and the peak absolute floor

acceleration. In a real-life control problem, other indices, such as J4, the peak interstory drift may

have to be taken into account. Therefore, the performance indices given in the dissipativity anal-

ysis should not be considered as a final design.

J9

J9

 Table 7.2: Earthquake ground motion data used in the numerical simulations

Earthquake Location

Northridge,
California (1994)

Newhall

Sylmar

Rinaldi

Imperial Valley,
California (1940)

El Centro

Kobe,
Japan (1995)

Kobe

Jiji,
Taiwan (1999)

Jiji

Erzincan,
Turkey (1992)

Erzincan

J3 J5
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7.3 Benchmark Structure with Linear Isolation

In this section, the linear benchmark structure is investigated. As discussed before, the linear

structure is exactly the same as the nonlinear structure that is given in the previous section except

that nonlinear lead-rubber bearings are replaced with linear rubber bearings. A clipped optimal

control strategy is applied to the benchmark structure, where a conventional approach for the

design of the primary controller is utilized. In this approach, an active controller is designed

assuming the damper is a fully active device; i.e., it can apply dissipative forces as well as non-

dissipative forces to the structure. This controller is selected such that it yields the best perfor-

mance according to a predefined design goal for several earthquake ground motions. Then, the

selected active controller is simply used in the clipped optimal control as a primary controller.

Clearly, the dissipative nature of the controller is not taken into account in the design process.

In the following, a conventional semiactive design approach is explained for two design

goals and applied to the linear benchmark structure as explained above. Performance indices are

presented graphically and tabularly for both active and semiactive structures. Then, a dissipativ-

ity analysis is provided based on the dissipativity indices.

7.3.1 Conventional Semiactive Design

As the control design parameters given in the previous sections imply, two major design

goals are considered. The first design goal aims to reduce peak base drift ; the resulting design

is called DES1. The second design, called DES2, aims to reduce peak absolute floor accelera-

tions . In the following, the parameters  and  are investigated to yield the best  and 

values for both designs. Moreover, as the controllers obtained from this design will be used for

semiactive control, it is also desired that , which means the peak primary control force

cannot exceed 15% of the weight of the structure. 

J3

J5 a b J3 J5

J10 0.15
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Conventional semiactive design requires the selection of the best active control design that is

defined by the design goal. For example, for the design DES1, the selected control design should

yield the best  value while other indices have reasonable values. Similarly, the selected control

design for DES2, should yield the best  value while other indices have reasonable values. A

set of conditions are defined in Table 7.3 to achieve these goals. These values are user-dependent

and can be selected in different ways. To find the control parameters (a, b) of the designs that sat-

isfy the performance indices given in Table 7.3, a numerical search is conducted for each of the

earthquake ground motion records. In this numerical study, a fully active system is analyzed for

the earthquakes provided by the benchmark definition study for a wide range of control design

parameters (a, b), and performance indices are computed for each controller. Then, two control-

lers are selected that satisfy the conditions given in Table 7.3. The control weight parameters for

these designs are given in Table 7.4, along with the final LQR parameters, which are found by

averaging the design parameters that are selected for the earthquakes. 

The control design of the benchmark building is a very complex trade-off problem, and vari-

ous design approaches may yield different performances. To illustrate this challenge and the gen-

eral appearance of the performance indices of the active system, the best and the final control

designs for DES1 and DES2 are graphed along with some of the performance indices for some of

J3

J5

 Table 7.3: Conditions on the performance 
indices for control designs

J DES1 DES2

J3 min (J3) J3 < 1.0

J4 J4 < 1.0

J5 J5 < 1.0 min (J5)

J10 J10 < 0.15
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the earthquakes in Figures 7.6 to 7.13. It is easy to observe that performance indices ,  and

 show similar behavior. Likewise,  and  have similar behavior, and they show the trade-

off compared to the former set of indices. So, any design that favors one group of indices com-

promises the other group of indices. Moreover, they show different behaviors for different earth-

quakes.                                 

To further exploit the trade-off between DES1 and DES2, indices  and  are graphed in

separate figures given by Figures 7.14 and 7.15. The contour graphs prove the challenge associ-

ated with the trade-off problem discussed above. For example, if a design is selected for DES1

based on a single earthquake, the design will not be optimal for other earthquakes.

Having decided on the final control design parameters for designs DES1 and DES2, semi-

active control can now be simulated using these control designs as primary controllers. In the

semiactive simulations, the 20-ton MR damper is used. It is required that the original damper

model be modified so that its capacity is suitable for the force levels of the primary controller. A

 Table 7.4: Best and final controller design parameters

Earthquake
DES1 DES2

log(a) log(b) log(a) log(b)

Newhall –2.1429 –0.9184 –3.9796 –0.7143

Sylmar –2.7551 –0.7143 –3.3673 –0.1020

El Centro –1.7347 –0.5102 –3.1633 1.1224

Rinaldi –2.5510 –0.9184 –2.7551 –0.7143

Kobe –2.1429 –1.3265 –3.3673 –0.3061

Jiji –1.3265 –1.7347 –2.9592 –1.3265

Erzincan –1.9388 –1.1224 –2.9592 –0.1020

Final –1.9096 –1.0933 –3.2216 –0.3061

J1 J2

J5 J3 J4

J3 J5
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Figure 7.6 Best and final designs and performance indices J1, J2, J3, J4, J5 and J7 of the linear 
benchmark structure for Newhall earthquake
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Figure 7.7 Best and final designs and performance indices J8, J9, J10 and J11 of the linear 
benchmark structure for Newhall earthquake
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Figure 7.8 Best and final designs and performance indices J1, J2, J3, J4, J5 and J7 of the linear 
benchmark structure for El Centro earthquake
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Figure 7.9 Best and final designs and performance indices J8, J9, J10 and J11 of the linear 
benchmark structure for El Centro earthquake
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Figure 7.10 Best and final designs and performance indices J1, J2, J3, J4, J5 and J7 of the linear 
benchmark structure for Kobe earthquake
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Figure 7.11 Best and final designs and performance indices J8, J9, J10 and J11 of the linear 
benchmark structure for Kobe earthquake
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Figure 7.12 Best and final designs and performance indices J1, J2, J3, J4, J5 and J7 of the lin-
ear benchmark structure for Jiji earthquake
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Figure 7.13 Best and final designs and performance indices J8, J9, J10 and J11 of the linear 
benchmark structure for Jiji earthquake
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Figure 7.14 Best and final designs and performance indices J3, and J5 of the linear benchmark 
structure for Newhall, Sylmar and El Centro earthquakes
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Figure 7.15 Best and final designs and performance indices J3, and J5 of the linear benchmark 
structure for Rinaldi, Kobe and Jiji earthquakes



114

simple approach that is frequently employed by researchers is magnifying the damper force with

a coefficient in accordance with the primary controller. To be consistent with the terminology of

the previous research (Erkus et al. 2002), the term magnification factor (MF) will be used for this

coefficient. Experience shows that in theoretical research, the MF should be selected for each

primary control design separately to achieve the same damper and primary control force levels,

so that comparison of the indices will have better physical meaning. It should be noted that this is

not an approach taken in a practical problem. In practice, an engineer can select from a variety of

commercial dampers with various force capacities that best fits his/her needs. 

To obtain MFs suitable for the designs DES1 and DES2, several numerical studies are con-

ducted to achieve similar  indices for both active and semiactive systems using the available

earthquake data. It is found that an MF = 8 and an MF = 5 are suitable for the designs DES1 and

DES2, respectively. Using these MF values, semiactive systems are simulated, and performance

indices for the active and semiactive systems for the final designs of DES1 and DES2 are given

in Tables 7.4 and 7.6.      

The results given in Tables 7.4 and 7.6 provide good information about the semiactive per-

formance of designs DES1 and DES2. It is easily observed that DES1 reduces the -index suc-

cessfully, while DES2 is not successful in reducing the -index. Considering the trade-off

problem between DES1 and DES2, it is easily observed that a semiactive system is more suitable

for DES1 than for DES2. Even in DES1, the semiactive system is not successful in reducing all

of the indices. It is also observed that  has lower values (less energy dissipated by the damp-

ers) in DES2 when compared to DES1. This is a simple indication of the effect of the dissipative

nature of the primary controller.

J10

J3

J5

J9
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Clearly, conventional semiactive design never takes into account the dissipativity aspects,

and selected designs may yield unacceptable semiactive performance. This makes the semiactive

design more challenging since, without considering the actual cause of low performances, an

engineer can only do numerical simulations and vast control parameter studies to achieve pri-

mary controllers that yield better semiactive performance. This is another challenging task as a

semiactive system is already very nonlinear and do not exhibit a well-defined behavior. More-

over, simulations will be very computationaly intensive and, in some cases, time-constraints will

limit the number of additional simulations. In the next section, a simple dissipativity analysis is

shown to provide useful information in the semiactive design process without doing extensive

parametric studies.

7.3.2 Dissipativity Analysis

The dissipativity indices that were reviewed and introduced in Chapter 4 are for systems

with a single controller and must be adapted to be used for the benchmark problem defined above

since it has twelve controllers. A cumulative index is defined to represent the dissipativity char-

acteristics of the control designs as follows:

(7.32)

where  is the cumulative dissipativity index,  is the number of the controllers,  is the dis-

sipativity of the  controller, and  is a weight associated with the  controller, which is

defined as follows

(7.33)

Dc wiDi

i 1=

N

=

Dc N Di

ith wi ith

wi
RMS(ui

RMS(uj
j 1=

N-------------------------------=
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where ui is the ith control force. Cumulative indices are, therefore, weighted averages of the indi-

vidual indices.

Tables 7.6 and 7.8 show the dissipativity characteristics of the designs DES1 and DES2 for

the Newhall earthquake. These two tables show that the proposed cumulative index is a good

indicator for the overall dissipativity characteristics of the structure as the proposed cumulative

index represents the individual indices successfully. Further, for other control designs selected

randomly from the (a, b) parameter space, the computed cumulative dissipativity indices (not

given here) also validate the proposed index. Another observation is that some controllers have

(nearly) identical dissipativity indices for both active and semiactive systems such as fourth and

 Table 7.7: Dissipativity indices for DES1 for 
Newhall earthquake

i
D% De Dne

Act SAct Act Act

 1 0.900 0.878 –1348 –0.865

 2 0.873 0.838 –1349 –0.853

 3 0.900 0.880 –1665 –0.883

 4 0.873 0.828 –1504 –0.860

 5 0.782 0.800   –934 –0.707

 6 0.873 0.828 –1504 –0.860

 7 0.782 0.800   –934 –0.707

 8 0.862 0.837 –1245 –0.837

 9 0.875 0.870 –1242 –0.845

10 0.813 0.798 –1090 –0.788

11 0.900 0.880 –1665 –0.883

12 0.813 0.798 –1090 –0.788

Dc 0.859 0.844 –1324 –0.828
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sixth controller. This is a natural consequence of the symmetry in the control oriented mathemat-

ical model. It is also observed in both designs that the fifth and seventh controllers are the least

suitable for a damper as both controllers have the lowest dissipativity indices. So, a designer may

choose to remove or relocate these dampers to obtain better dissipativity characteristics, or active

or passive devices may be used instead of the dampers.

The most important observation in Tables 7.6 and 7.8 is the difference in the dissipativity

indices of DES1 and DES2. It is observed that DES1 is by nature more dissipative than DES2.

This is true for both active and semiactive systems. This information is very important in under-

 Table 7.8: Dissipativity indices for DES2 for 
Newhall Earthquake

i
D% De Dne

Act SAct Act Act

 1 0.633 0.693 –1101 –0.247

 2 0.640 0.723 –1046 –0.244

 3 0.550 0.692 –1216 –0.237

 4 0.617 0.690 –1139 –0.238

 5 0.602 0.645   –751 –0.173

 6 0.617 0.690 –1139 –0.238

 7 0.602 0.645   –751 –0.173

 8 0.565 0.717   –962 –0.238

 9 0.648 0.700 –1038 –0.240

10 0.545 0.702   –794 –0.205

11 0.550 0.692 –1216 –0.237

12 0.545 0.702   –794 –0.205

Dc 0.588 0.688 –1012 –0.225
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standing the performance indices of DES1 and DES2 given in Tables 7.4 and 7.6. As noted

before, semiactive dampers are more successful in imitating the active primary control force in

DES1 than they do in DES2. The dissipative nature of the primary controller of DES2 shows that

this design is not expected to be successful in imitating the active controller. Thus, if the design

goal, for this or a similar structure, is to reduce the absolute accelerations of the structure, the

semiactive system may not be successful in reaching this goal due to the low dissipative nature of

the controller.

The results and observations given above suggest that the dissipativity of all controllers

would be useful in understanding the performance indices provided. In this respect, cumulative

dissipativity indices are shown in Figures 7.16 and 7.17 as a function of the control weights (a,

b). Note that De is normalized by its maximum absolute value for better visualization.
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Figure 7.17 D% plots for the active linear benchmark structure for various earthquakes
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An interesting observation in the dissipativity indices are the similarities between them. For

example, Dne has a very similar pattern to D%, and De has a very similar pattern to J9. The justi-

fication for these observations comes from the definitions of the indices. For example, Dne is the

correlation coefficient between the control force and the velocity. Considering the relation

between Dp, Dne, and D%, it is quite expected to have a D% index similar to the Dne index. Also

noting that J9 represents the time integral of energy flow rate, it is clear that De is proportional to

the mean of J9 for a white-noise excitation. Based on these relations, a classification of the indi-

ces is provided in Table 7.9.

Another observation is the variation of dissipativity indices of the active system for various

values of J3 and J5. For example, all of the dissipativity indices have their peak values for control

designs that have either very large J3 or very large J5. Therefore, these controllers are not suit-

able for the semiactive system that would most probably result in unacceptable semiactive per-

formance indices. This shows that high dissipativity values do not necessarily mean better

semiactive performance, which can be explained by the fact that theoretically, semiactive system

performance is always bounded by the corresponding active system performance. It is also

 Table 7.9: A Classification of dissipativity indices

Characteristics of the Control Force Dissipativity Index

Normalized mean energy dissipation rate Dne

Percentage of dissipative forces D%

Probability of dissipative forces Dp

Energy dissipation rate De

Energy dissipated by the device J9

GROUP 1

GROUP 2
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observed that control designs with high Dne values do not necessarily have the best J3, yet they

have acceptable J5 performance in contrast with the 2-DOF problem considered. These simula-

tions, therefore, show that a control design for a semiactive system should be selected both con-

sidering the active performance and the dissipativity of the controller.

To clarify the results given above, performance and dissipativity characteristics of the con-

trol designs in between the designs DES1 and DES2 in the (a, b) parameter space, and control

designs not located close to DES1 and DES2 are investigated. For that purpose, two sets of con-

trol designs, which are defined by ‘Line A’ and ‘Line B’ in Figure 7.8, are considered. Control

designs on Line A represent the transition between DES1 and DES2, while designs on Line B are

selected because along this line J3 and J5 change in a uniform manner. An important issue here is

the magnitudes of the control forces and MR damper forces. A standard way to investigate this
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type of problem would be by comparing performances of the systems for the same force levels.

Therefore, during the simulations of the Line A, the MF of the dampers are modified in a manner

that damper force levels are close to the control force levels. This is done by a linearly distributed

MF values between DES1 (MF = 8) and DES2 (MF = 5) values. For line B, MF is taken as 5 for

all of the controllers to observe the effect of control force levels on the semiactive performance.

In general, a unique MF that is valid for all earthquakes cannot be found as the control force lev-

els may be very different from each other for various earthquakes as shown by performance

index J10 in Tables 7.4 and 7.6. The dissipativity and performance characteristics of the control-

lers on Lines A and B are given in Figure 7.19 for the Newhall earthquake. Note that dissipativity

index De is normalized by its maximum absolute value, and D% is negated for better visualiza-

tion. There are various observations that can be drawn from Figure 7.19.

• Observations for Line A: All dissipativities along Line A show similar behavior: high dissi-

pativity for best DES1 and lower dissipativity for best DES2. The transitions of active J3 and

J5 indices from DES1 to DES2 are easily observed: Better active J5 values are achieved by

controllers with low dissipativity values. The semiactive system has a good J3 for DES1, yet

it increases with the decreasing dissipativities. J5 of the semiactive system is always larger

than 1 and does not show a particular trend. (This is a good example that shows how com-

plex a semiactive control design can be. For example, it is very likely that J5 will show a dif-

ferent behavior for another earthquake, which does not allow the designer to pick a control

design that is efficient for all earthquakes. Again, this is a consequence of the dissipative

nature of the semiactive system. While the challenge explained here is a disadvantage from a

performance point of view compared to the active system, it does not jeopardize the robust-
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ness of the system. Moreover, compared to a passive system, which has fixed properties, it

will have a wider range of applicability for various earthquakes.)

• Observations for Line B: The dissipativity plots are more complex, which is due to the con-

trollers selected. One observation along Line B is the similarity between D% and Dne. The

trend of the performance indices are more evident in Line B. However, the effect of large

control forces is evident as well. Therefore, to predict the performance of a semiactive sys-

tem, it is suggested to have controllers with force levels suitable for the practical damper

model.

7.4 Benchmark Structure with Nonlinear Isolation

A major challenge in the control of the benchmark structure with a nonlinear isolation sys-

tem is that there is no general well-defined analytical method developed particularly for a system

with the various types of nonlinearities that are common in civil engineering. One approach for

utilizing linear control theory for the nonlinear structure is to use an equivalent linear model

(ELM) of the nonlinear structure. However, the selection of an ELM is not a trivial task. A

“good” ELM should behave “similarly” to the nonlinear structure when both are controlled.

Therefore, the response characteristics of the controlled nonlinear structure should be known a

priori to be compared with the controlled ELM response. To find the response of the controlled

nonlinear structure, numerical simulations should be carried out. However, the controller that

will be used in the simulations can only be designed by linear control theory if an ELM is avail-

able. Therefore, to design an ELM, a controller is required, and to design a controller an ELM is

required. This creates a circular dependency problem in the design process, which can only be

solved with an iterative procedure (Figure 7.20). 
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Another challenge is the time-efficiency considerations of the numerical analysis of the non-

linear benchmark structure. The active control simulations of the nonlinear structure requires

considerable amount of time. If, further, a semiactive control scheme with smart dampers is uti-

lized, the simulations become so computationaly expensive that they are not practical. Therefore,

it is not possible to cover a wide variety of control design parameters to investigate the dissipa-

tivity and performance relations.

Due to these challenges as well as those discussed in the linear benchmark problem, it is evi-

dent that a complete analysis and investigation of the nonlinear problem is not feasible for this

study. Therefore, the scope of the dissipativity-performance analysis is concentrated on the

active control design performance and the verification of the dissipativity results for the nonlin-

ear structure.

Linear Controller 
for the 

Nonlinear Structure

requires a linear 
model of the structure

Equivalent Linear 
Model of the 

Nonlinear Structure

requires response characteristics 
of the nonlinear structure 
with the linear controller

Simulation of the 
Nonlinear System with 
the Linear Controller

requires the 
linear controller

CIRCULAR 
INTERDEPENDENCY

Figure 7.20 Circular interdependency in the linear control design of a nonlinear 
structure
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In this section, first, the equivalent linear model and the LQG controller design used in the

nonlinear analyses are explained. For this purpose, a new set of state-space equations is defined

for the ELM and used in the LQG control design. Then, the iterative method is used to obtain an

ELM for the base isolated benchmark structure. This model is used in the active and semiactive

control of the nonlinear benchmark structure. Finally, a dissipativity analysis similar to the linear

case is given.

7.4.1 Controller Design

Let the state space representation of an ELM, including the measurements and the evaluation

output to be minimized, be given as

(7.34)

where  is the state vector,  is the control force. As in the linear benchmark problem,

the measured quantities in  are absolute floor accelerations, absolute ground accelerations

and controller drifts, and the outputs to be minimized are absolute floor accelerations and the

drifts of the corner isolators. The system is augmented by a the Kanai-Tajimi filter (as described

in the linear benchmark building design), giving the state-space form

(7.35)

The goal of a standard LQG controller is to find a control gain  that satisfies the following

optimization problem:

q· ELM AELMqELM BELMuELM EELMx··g
abs+ +=

yELM Cy
ELMqELM Dy

ELMuELM Ey
ELMx··g

abs+ +=

zELM Cz
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˜
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˜
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(7.36)

7.4.2 ELM Design

The ELM is obtained through an iterative method, which is explained below. Although the

steps given are for the bilinear nonlinearity, they can be modified for other types of nonlineari-

ties.

1. An initial guess for the ELM is obtained by replacing the 61 elastic-perfectly-plastic ele-

ments with 61 linear stiffness elements, where the linear stiffnesses are set to the

preyield stiffness of the elastic-perfectly-plastic elements. Therefore, the lead plugs in

the ELM are modelled with linear stiffness . Here, the superscript  in

 represents the iteration number. 

2. An LQG controller is designed for the ELM obtained in the previous step as explained in 

the LQG design section.

3. Numerical simulations are carried out for both the controlled nonlinear model and the 

controlled ELM using an historical earthquake ground acceleration record. Then, the fol-

lowing ratio is obtained:

(7.37)

where  and  are the resultant lead-plug forces acting on the mass-center of

the base obtained from simulations of the controlled nonlinear model and controlled

ELM, respectively. Here,  represents the iteration number.

E zELM TQzELM uELM TRuELM zELM TNuELM uELM TNTzELM+ + +
K

min

u
˜

Kq̂
˜

–=subject to  (7.35)  and

klead
1 k1 k2–= 1

klead
1

i RMS Flead
nonlin

RMS Flead
ELM

--------------------------------=

Flead
nonlin Flead

ELM

i
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4. The linear stiffness of the lead plugs in the ELM are updated as 

(7.38)

and a new ELM is obtained.

5. Steps 2–4 are repeated until convergence, and a  is obtained.

The iterative procedure is carried out for seven historical ground motion records until

 is satisfied. The same controller is used in step 2 in every iteration. After

some parametric studies, the control parameters are selected as ,

 and m2/N2 for equal weights on displacements and accelera-

tions, i.e., , ,  and . In the Kalman filter design

 is used. The energy dissipation by the lead plugs in the nonlinear model is repre-

sented in the ELM by an assumed linear damping of 207 kN.s/m, which is obtained based on

some test simulations. The results of the iterative procedure are given in Table 7.10. Considering

the results of the iterative study, the ELM is obtained by taking , which is the average

of the normalized stiffness obtained for the earthquakes.

It may be useful to first investigate the variation of  with  to check the convergence of

the iterative method explained above. This can be done by simply plotting  for several normal-

ized  values given by

(7.39)

It should be noted that if the method converges,  goes to  and

. Seven sets of numerical simulations are carried out, one per

klead
i 1+ iklead

i=

klead
final
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earthquake, to investigate the variation of  for various . The results of four sets of simula-

tions are shown in Figure 7.21; those for the other three earthquakes are similar. As shown in

Figure 7.21, one can easily judge that the iterative procedure will converge. For example, con-

sider the curve for the Newhall earthquake. The first iteration starts with , and it gives

 Table 7.10: Results of the final iteration.

Earthquake Iterations (kN/m)

Newhall   7 0.225 1250.297

Sylmar 10 0.107   595.733

El Centro   7 0.409 2268.341

Rinaldi 12 0.098   545.731

Kobe   8 0.204 1129.667

Jiji 15 0.051   280.826

Erzincan   8 0.134   743.401

Final   - 0.175   973.428

k̃lead klead

k̃lead

Figure 7.21 Relation between normalized stiffness and 
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. In the second step,  is used, which gives . Similarly, one can easily

show that for both  and , the method converges to . This observation is

valid for other earthquakes due to the monotonically decreasing function,  (Figure 7.21).

The controlled nonlinear model and the converged ELM are simulated for the seven earth-

quake ground accelerations defined in the benchmark problem. The purpose here is to compare

the responses to verify that the controlled ELM responses are indeed approximately replicating

those of the original controlled nonlinear structure. For each earthquake, two ELMs are studied

— one with lead stiffness optimal for the particular earthquake (e.g.,  for El Cen-

tro) and one using the average lead stiffness ( ). Figures 7.22, 7.23 and 7.24 show

representative comparisons for three particular earthquakes — El Centro, Kobe and Jiji. For each

of the earthquakes, the displacement of the mass-center of the base of both ELM and nonlinear

model in the –direction and the hysteretic behavior, and the absolute acceleration of the mass-

center of base and  floor are shown.        

The ELMs are able to efficiently represent the nonlinear behavior of the isolated structure

when the earthquake-specific  are used. While the lead force peaks of the ELMs are some-

what larger, they are approximated fairly well for most of the duration of the earthquake. Further,

the base drifts and the superstructure absolute accelerations of the ELM are quite similar to those

of the nonlinear model. For the final ELM design, the isolation-layer stiffness is an average of

the seven earthquake-specific ELMs. Consequently, the final stiffness is smaller than the optimal

stiffness for smaller earthquakes, but larger than optimal for the strong records. This trade-off is

expected in this type of linearization problem when excitation characteristics vary significantly.

Nevertheless, the final design is a good balance in designing for the more frequent moderate

earthquakes as well as the more severe strong ground motions.
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The ELMs and the controller parameters are investigated by obtaining the performance indi-

ces defined in the benchmark problem definition paper. As in the ELM-nonlinear structure com-

parison plots, two types of ELM are investigated: earthquake specific ELMs and the final ELM.

The results are shown in Table 7.11. The performance indices show that the sample controller

designed here behaves satisfactorily for several earthquake ground acceleration data.

The challenges in the semiactive control of the nonlinear structure are now better clarified as

the performance is also dependent on the efficiency of the ELM. Normally, the iterative proce-

dure must be redone if a different set of control design parameters are selected. However, from

the perspective of this research, it is acceptable to use the ELM given above. Therefore, the ELM

given in this section is used in the dissipativity analysis.

7.4.3 Dissipativity Analysis

Similar to the dissipativity study of the linear structure, two design goals are considered.

These goals are same as those of DES1 and DES2, which are given in Table 7.3. However, the

search domain for the variables  and  are restricted to  and  to avoid

designs with unacceptable performance indices. Several test simulations are used to determine

that a suitable magnification factor for the MR damper is 3. The resulting designs, along with the

ELM design, are noted on the contour plots of performance indices in Figures 7.25 and 7.26 for

the Newhall earthquake. Moreover, to observe the trends of indices  (peak base drift) and 

(peak absolute floor acceleration), these indices are graphed for the earthquakes other than

Newhall in Figures 7.27 and 7.28. Note that due to the difference in the definitions of the LQR

control parameters, the appearance of the performance indices is shifted from the ones given pre-

viously for the linear structure. However, it is very clear that the main challenge in the design

remains the same: a trade-off between various indices.           

a b 10 5– 10 2– 10 3– 100

J3 J5
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A very important observation in the performance plots is the J9 index. Some of the control-

lers have negative J9 values, which means that the controller must add energy to the system to

achieve that design objective. However, the linear benchmark structure does not have control

designs with negative J9 values. This result shows that for a more realistic structure, i.e. a struc-

ture with a nonlinear behavior, it is more likely that a controller inject energy to the structure to

achieve its design goals. Therefore, robustness characteristics of semiactive devices are very

important for civil structures and are more desirable than active devices for seismic protection. 

It is also observed that the final ELM design selected for the nonlinear structure shows an

overall performance somewhat in between DES1 and DES2 performances. For example, for

almost all of the performance indices given for the Newhall earthquake (Figures 7.25 and 7.26),

ELM design has an index that is between the indices of DES1 and DES2. This is also true for the

J3 and J5 indices given for the other earthquakes (Figures 7.27 and 7.28). This result shows that

the selected ELM and the corresponding design provide a good model and controller for the non-

linear benchmark structure in overall sense.

The dissipativity indices of the primary controller for the nonlinear benchmark structure are

shown in Figures 7.29 and 7.30. The variation of dissipativities is similar to that of the linear

benchmark structure in the sense that controllers with lower J3 values have higher dissipativity

characteristics than the controllers with lower J5 values. The similarities between  (in Figure

7.26) and  (in Figure 7.29) and between  (in Figure 7.29) and  (in Figure 7.30) are

observed as in the linear benchmark case.                        

Dissipativity and performance indices for DES1, DES2 and the final ELM controller design

are given in Tables 7.12–7.17. As in the linear structure, the proposed cumulative index success-

fully represents the dissipativity indices of the controllers. Also, controllers 5 and 7 again have

J9

De Dne D%
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the lowest dissipativity indices, which shows that these controllers are the least effective in the

semiactive system.

While the dissipativity tables for the Newhall earthquake (Tables 7.12–7.14) give a good

idea of the behavior of the dissipativities of the designs for various earthquakes, the difference in

the dissipativities of the active and semiactive system is more clear in the performance index

tables (Tables 7.15–7.17). For example, the index  has a negative value for the DES2 active

design subject to the Kobe earthquake in Table 7.16. Also, the difference between the dissipativ-

ities of the active and semiactive systems is more clear in the same table. In fact, this table is a

very good example of how a semiactive system with a clipped optimal control that has a low dis-

sipativity primary controller behaves. In this case, the semiactive system behaves like a passive

system as it is not efficient in reproducing the active control forces. For example, the semiactive

system has better  indices than the active system in Table 7.16, even tough DES2 is not a con-

troller that aims to reduce .

−0.995

−0.95

−0.8

−0.8

−0.6

−0.6

−0.4

−0.2 −0.2

lo
g 10

(a
)

D
e
 / max (|D

e
|)

log
10

(b)
−4 −2 0

−4

−2

0

−0.867

−0.8

−0.7

−0.7
−0.6

−0.6

−0.4

−0.2

−0.1

D
ne

log
10

(b)
−4 −2 0

Final DES1 design
Final DES2 design
ELM Design

Figure 7.29 De and Dne plots for the active nonlinear structure

J9

J3

J3



144

0.6

0.6

0.7

0.7

0.76

lo
g 10

(a
)

NEWHALL

D
%

−4

−2

0

0.5

0.5

0.6

0.6

0.7

0.725

SYLMAR

0.5

0.5

0.6

0.6

0.65

0.65

0.7

0.75

lo
g 10

(a
)

EL CENTRO

−4

−2

0

0.5

0.5
0.6

0.6

0.65

0.65

0.675

RINALDI

0.5

0.5
0.6

0.6

0.65

0.7

lo
g 10

(a
)

log
10

(b)

KOBE

−4 −2 0

−4

−2

0

0.5

0.6

0.6

0.7

0.7

0.75

0.8

0.82

log
10

(b)

JIJI

−4 −2 0

Final DES1 design
Final DES2 design
ELM Design

Figure 7.30 D% plots for the active nonlinear structure for various earthquakes



145

The differences in the performance indices of the linear and nonlinear semiactive systems are

also significant. It is observed that the nonlinear semiactive structure has lower interstory drift

indices (J4 and J11) compared to the linear semiactive structure for both DES1 and DES2. On the

other hand, absolute floor acceleration indices (J5 and J8) of the nonlinear semiactive structure

are quite large compared to the linear semiactive structure for both DES1 and DES2. Due to the

complexity of the benchmark structure, it is difficult to reach a strict conclusion for this behavior,

yet it is clear that a final semiactive controller has to be designed carefully considering the over-

all performance. Note that the designs DES1 and DES2 are selected for the investigation of dissi-

pativity and cannot be used as final designs.

 Table 7.12: Dissipativity indices of the 
nonlinear system for DES1 for Newhall 

earthquake

i
D% De Dne

Act SAct Act Act

 1 0.730 0.817   –772 –0.672

 2 0.777 0.783   –760 –0.670

 3 0.680 0.812 –1008 –0.735

 4 0.757 0.797   –884 –0.709

 5 0.762 0.802   –509 –0.501

 6 0.757 0.797   –884 –0.709

 7 0.762 0.802   –509 –0.501

 8 0.725 0.777   –680 –0.635

 9 0.748 0.827   –699 –0.639

10 0.683 0.747   –568 –0.563

11 0.680 0.812 –1008 –0.735

12 0.683 0.747   –568 –0.563

Dc 0.727 0.798   –750 –0.641
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There is a very important benefit of the proposed dissipativity indices from a numerical point

of view. To compute the indices J9 and D%, the active system (linear or nonlinear) has to be sim-

ulated for an excitation, which may take around 10 minutes on a moderate Pentium computer

(e.g. with a Pentium 4, 2.4 GHz processor). On the other hand, computation of the De and Dne

indices take less than a second since they only require the solution of a Lyapunov equation.

Moreover, consider the nonlinear semiactive benchmark structure with twelve MR dampers,

which is a computationaly expensive process. For example, one simulation of the nonlinear

semiactive system with the dampers for a 30 sec earthquake record can take about 1.5 hours on a

high-end, dual processor G5 Macintosh server with a high-end, Unix-based operating system.

 Table 7.13: Dissipativity indices of the 
nonlinear system for DES2 for Newhall 

earthquake

i
D% De Dne

Act SAct Act Act

 1 0.578 0.680 –525 –0.172

 2 0.647 0.702 –429 –0.148

 3 0.538 0.722 –669 –0.193

 4 0.628 0.688 –432 –0.126

 5 0.462 0.522 –135 –0.042

 6 0.628 0.688 –432 –0.126

 7 0.462 0.522 –135 –0.042

 8 0.587 0.677 –411 –0.157

 9 0.560 0.652 –452 –0.151

10 0.522 0.660 –352 –0.153

11 0.538 0.722 –669 –0.193

12 0.522 0.660 –352 –0.153

Dc 0.550 0.661 –428 –0.140
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Simulation times can reach 4 hours on a Pentium 4-based PC with an WinXP operating system.

These are very good examples to show how active and semiactive, linear and nonlinear simula-

tions can be very time consuming and impractical. From this perspective, dissipativity analysis

with the proposed indices provides an essential tool to investigate control designs that are more

suitable for smart dampers. 

7.5 Design Considerations

The results given in this chapter show that the controllers with the best dissipativity charac-

teristics are not necessarily the best primary controllers for smart dampers, which is very evident

 Table 7.14: Dissipativity indices of the 
nonlinear system for the final ELM design for 

Newhall Earthquake

i
D% De Dne

Act SAct Act Act

 1 0.707 0.747 –504 –0.431

 2 0.775 0.735 –430 –0.395

 3 0.650 0.757 –626 –0.430

 4 0.742 0.738 –471 –0.364

 5 0.633 0.682 –309 –0.277

 6 0.742 0.738 –471 –0.364

 7 0.633 0.682 –309 –0.277

 8 0.733 0.718 –400 –0.408

 9 0.717 0.735 –459 –0.411

10 0.655 0.713 –351 –0.404

11 0.650 0.757 –626 –0.430

12 0.655 0.713 –351 –0.404

Dc 0.684 0.728 –451 –0.384
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from the dissipativity graphs shown herein. This was also the case for the 2-DOF examples. Then

the question one might pose is “What exactly is the benefit of a dissipativity analysis?”. There

are several answers to this question. First, dissipativity indices identify control designs that are

more suitable for smart dampers. This is very beneficial information that is acquired without

doing any semiactive simulations. Second, dissipativity indices can be used as an index for

robustness of the controller. This information is very critical for nonlinear structures. It is desir-

able to avoid controllers that may input energy to the system as in the nonlinear benchmark

building. Another practical application is the identification of the controllers with low dissipativ-

ities. In this chapter, while cumulative indices are used for dissipativities, the dissipativity indi-

ces for the individual controllers give important information when deciding the locations of the

dampers. For example, in the benchmark structure, the fifth and seventh controllers yield low

dissipativities for both linear and nonlinear structures, which allows the designer to rearrange the

locations of these dampers.

It should be noted that the design goals selected in this study serve completely the investiga-

tion of dissipativity. A real-life control design procedure should be based on the customized

needs of the problem. For example, in the benchmark problem, the control design should aim to

reduce absolute accelerations of the floors, drift of the base and floors, control force required etc.

Neither DES1 nor DES2 serve realistic control design goals; rather, they were chosen to demon-

strate particular dissipativity characteristics.

As discussed before, most of the civil structures experience nonlinearity during a major

earthquake. In fact, in real-life conditions, the nonlinearity of the structure may be more compli-

cated than the one considered here, which may result controllers that input more energy to the

structure. If not well-designed, no matter what control theory is used, an active system may yield
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very unexpected results due to the extreme changes in the characteristics of the structure. Semi-

active devices simply eliminates this issue, which is desirable in structural engineering.

7.6 Summary

In this chapter, the smart base isolated benchmark structure is investigated in the context of

dissipativity and performance. As the benchmark structure resembles a realistic structure, it pos-

sess various facets of a practical control problem. For this structure, it is verified that particular

design goals are easier to achieve with smart dampers through a dissipativity study. While

research on semiactive control of buildings with smart dampers shows that semiactive control is

very efficient compared to passive systems and it is robust and reliable compared to active sys-

tems, selection of the control design must be done carefully; a dissipativity analysis serves this

purpose.
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CHAPTER 8

CONCLUSIONS AND DIRECTIONS FOR FUTURE 

RESEARCH

In this dissertation, the dissipativity and performance of semiactive systems with smart

dampers are investigated. First, two new indices are defined in addition to those previously

defined in the literature. The statistical and physical relations among these dissipativity indices

are discussed. Then, a method based on LMI control design is proposed to modify the dissipativ-

ity characteristics of the primary control force in clipped optimal control. The method converts

an LQR problem into a multiobjective EVP form, where new inequality constraints can be

imposed on the controller. Based on the indices defined, possible inequality constraints are

derived. Third, the proposed indices and the proposed LMI-based control theory are employed

for two simple 2-DOF systems. In the last part, the smart base isolated benchmark structure is

investigated for dissipativity and performance relations. Two types of isolation systems are con-

sidered: linear and nonlinear. An iterative procedure is proposed to be able to utilize a linear con-

trol theory for the nonlinear structure. The conclusions derived from this study are listed below:

• Both proposed and previously used dissipativity indices provide an efficient way of identify-

ing the dissipativity characteristics of a force. Dissipativity indices are classified into two

categories, which are summarized in Table 7.9.

• The proposed LMI-based controller successfully improves the dissipativity characteristics of

a controller. This has two practical uses for simple 2-DOF structural systems with theoretical

smart dampers. First, controllers with higher dissipativity characteristics can be located with
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a numerical study, which reduces the semiactive design effort considerably. Second, in some

cases, dissipativity is improved that also improved the semiactive performance. For complex

and high-order systems, as in the case of the benchmark study, the LMI solver is not practical

and the accuracy may not be in the levels of acceptable engineering limits.

• Primary controllers with low dissipativity characteristics are not adequate for smart dampers.

In some cases, due to the dynamical characteristics of a smart damper, such controllers may

result in further reduction in the dissipativity, which may considerably reduce the efficiency

of the damper.

• The semiactive design procedure for complex, high-order structures should include a dissi-

pativity analysis to reveal control designs that are more suitable for MR dampers.

• A study of the proposed dissipativity indices computed via an inexpensive Lyapunov solu-

tion for the active primary controller, preliminary to the semiactive design, has the potential

for significant savings of the time and computational effort.

While this research gives an important insight into the concept of dissipativity in the semi-

active control of structures with smart dampers, it also exposes some other related topics to be

investigated. These are summarized below:

• Dne-based dissipativity constraint and equality constraint: The dissipativity constraint used

efficiently has been based on the mean energy flow rate (De). The problem with the dissipa-

tivity constraint based on Dne, which is given by

(8.1)

Tr Q1 2SQ1 2 Tr X Tr YN– Tr NTYT–+
Y S X
min

subject to
AS BY– SAT YTBT– EET+ + 0,       X R1 2/ Y

YTR1 2/ S
0,

S 0,             
FSCv

T–

FSFT CvSCv
T

----------------------------------------- ne
L
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has been implemented with an iterative method. While the iterative method solves (8.1), it

does not provide an improvement in the dissipativity from a practical point of view. Clearly,

the dissipativity constraint based on  is a nonlinear constraint. Therefore, available soft-

ware can be used to seek the solution of (8.1). It is also important whether the dissipativity

constraint in (8.1) can be represented as a BMI constraint or not. Of course, even if a BMI

constraint can be obtained, the BMI version of the problem given by (8.1) is not guaranteed

to be solvable by the available methods and software due to the complexity of BMI prob-

lems. It should also be noted that the dissipativity constraints based on  and Dne use the

Lyapunov matrix instead of the state covariance matrix. To impose the actual  and 

constraints, which are based on the state covariance matrix, the equality conditions given by

(5.23) must be used in the EVP. This results in a different optimization problem given by

(8.2)

Both of the problems defined above are very complex nonlinear matrix inequality problems

without and with equality constraints. A literature survey on this topic revealed that this is a

major area of numerical optimal control. It is known that some software is available for this

type of problem (e.g., Michal and Michael 2004). However, an initial investigation on this

topic and available software shows that these are quite challenging problems, which may

require specialized code development.

Dne

De

De Dne

Tr Q1 2SQ1 2 Tr X Tr YN– Tr NTYT–+
Y S X
min

subject to  

AS BY– SAT YTBT– EET+ + 0,     X R1 2/ Y
YTR1 2/ S

0,=

S 0,             
FSCv

T–

FSFT CvSCv
T

----------------------------------------- ne
L
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• Time-Domain Dissipativity Constraint (Hard Dissipativity Constraint): The nonlinear time-

domain dissipativity constraint  is a hard constraint. Due to the nature of a hard

constraint, an LQR problem is defined in a different form as follows: consider the linear sys-

tem given by (3.7). A linear quadratic control problem can be defined to find a piecewise

smooth control law  that brings the system from a known initial state  at time  to a

desired final state  at time  such that

. (8.3)

Clearly, this problem is quite different than the standard infinite time horizon LQR problem

defined in this dissertation. Now, consider that the control law  is also constrained by a set

of inequalities

    (8.4)

where  is the length of the control vector . While there is no analytical solution to this

problem, there are some numerical techniques proposed (Denham and Bryson 1964; Lasdon

et al. 1967; Ma and Levine 1993; Pytlak and Vinter 1993; Ma and Levine 1995; Zefran and

Kumar 1995). These techniques should be investigated for a possible solution of an LQR

problem with a deterministic dissipativity constraint.

uavd 0

u q0 t0

qf tf

qTQq uTRu qTNu uTNTq+ ++ td
t0

tf

K
min

subject to  q· Aq Bu Ew+ += u Kq–=
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APPENDIX

A.1 Dissipativity and Dissipative Systems

There are several definitions of dissipativity in the field of systems and control. In fact, dissi-

pativity is one of the key concepts in control theory, and there is a vast body of literature regard-

ing dissipative systems. However, one should note that these definitions in the controls literature

are used to characterize the input–output relations of dynamical systems and are different from

the mechanical definition used herein. Rather, dissipativity is associated with the control force in

this study, and the concept of a dissipative force is introduced based on mechanical dissipation of

energy. Although a connection between these two interpretations can be found, it is beyond the

scope of this study. Interested readers are directed to the works by Gurtin and Herrera (1964),

Willems (1972a,b), Taylor (1974), Ioannou and Tao (1987) and Wen (1988) for further details.

A.2 Convex Multiobjective Optimization via LMIs

Convex optimization techniques became very popular in the control field since it has been

shown that important control problems, such as robust H2 and H  control problems, can be rep-

resented in terms of LMIs. These techniques allow numerical solution of complex problems with

multiobjective goals that have no analytical solution. In fact, the LQR problem defined herein

can be represented as an H2 problem, and an available LMI representation of an H2 problem can

be used. However, robust H2 control theory is quite involved and requires a good knowledge of

frequency and time domain analysis. In contrast, LQR is well known and widely applied within

the structural control community; therefore, LQR is used in this dissertation. Interested readers

are directed to the works by Willems (1971), Khargonekar and Rotea (1991), Feron et al. (1992),
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Peres et al. (1992), Boyd et al. (1994), Safonov et al. (1994), Scherer et al. (1997), Turan et al.

(1997), Masubuchi et al. (1998), and Dullerud and Paganini (2000) for further details.

Application of LMI techniques to structural control problems is very recent. Some examples

are Yang et al. (2003) and Yang et al. (2004).

A.3 Algorithms for BMI Problems

As discussed previously, the existence of a solution of a problem with BMIs is not guaran-

teed in most cases since such problems are known to be –hard (Toker and Özbay 1995), and

no efficient algorithm exists to solve such problems as they do not have the convexity property.

However, there has been some effort to find local (Goh et al. 1994; Fujioka and Hoshijima 1997;

Kawanishi et al. 1997) and global (Goh et al. 1994; Tuan et al. 1999) solutions for BMI prob-

lems, and there has been some software developed for this purpose (Kenneth et al. 2004; Michal

and Michael 2004). Some of these software packages are also designed to analyze optimization

problems with nonlinear constraints.

A.4 Numerical Considerations

From an engineering and computational point of view, a strict LMI is not different from its

nonstrict version. For example, the dissipativity constraint is herein represented as a strict LMI in

numerical computations for consistency. However, there are also situations where the computa-

tions are quite sensitive to the inequality condition. For example, during numerical simulations,

it is observed that, for some specific values of the weighting matrices, the corresponding LQR

problem turns out to be ill-conditioned even though the conditions for the well-posedness given

by (3.11) are satisfied. It is found that some of the eigenvalues of  are very close to zero (in

the range of ) for these weighting matrices. Therefore, it is highly recommended that the

W

10 10–
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LQR weighting matrices be selected such that the smallest eigenvalue of  is large enough to

guarantee the well-posedness of the LQR.

A.5 MATLAB® Codes

The codes used in this research can be obtained by contacting Mr. Erkus at

bariserkus@gmail.com. Benchmark problem codes are available at http://www.usc.edu/dept/

civil_eng/johnsone/baseisobench/.

A.5.1 LMI-EVP Representation of an LQR Problem

function [Kdis, Sopt] =  lqrlmidis (sys, lq, gamma, options)

% LQRLMIDIS solves the standard LQR problem (type "help lqr" for more info)
%   with a Lyapunov dissipativity constraint, using LMI techniques.
%
%   The problem statement is as follows:
%
%   Consider a LTI system with a state-space representation given by
%       .
%       q = A q + B u + E w
%       zv= Cvq
%
%   where zv is the velocity of the controller
%
%   Standard LQR problem calculates a optimal gain matrix K, such
%   that the state-feedback law u = -Kq minimizes the cost function
%
%        J = Integral {q'Qq + u'Ru + 2*q'Nu} dt
%                                   .
%    subject to the state dynamics  x = Aq + Bu + Ew.
%
%   This problem is equivalent to the following eigenvalue problem:
%
%      min   Tr(SQ) + Tr(X) - Tr(YN) - Tr(N'Y')
%    (Y,S,X)
%
%   subject to  AS - BY + SA' - Y'B' + EE' < 0
%
%               [ X         Sqrt(R)Y ]
%               [                    ]  > 0
%               [Y'Sqrt(R)      S    ]
%
%   The dissipativity constraint is given as -YCv' < gamma (< 0).
%   With the addition of the dissipativity constraint, the eigenvalue
%   problem defined above is no longer equivalent to the LQR problem.
%
%   LMILQR solves the above eigenvalue problem with the dissipativity
%   constraint to compute the optimal gain matrix given by K = Y inv(S).
%   It uses the "mincx" function of the LMI Control Toolbox.

W



167

%
%   SYNTAX
%
%   K = lqrlmidis (sys, lq, gamma, options)
%       where sys is a structure with sys.A, sys.B, sys.E and sys.Cv
%       matrices and lq is a structure with lq.Q, lq.R and lq.N matrices.
%
%       gamma (< 0) is the dissipativity parameter
%
%       options is defined by the options of "mincx" function. If ignored
%       it is assumed as [1e-20, 100, -1, 5, 1]
%
%   written by Baris Erkus
%   ver 1.1

% Resolve the inputs
A = sys.A; B = sys.B; E = sys.E; Cv = sys.Cv;
Q = lq.Q; R = lq.R; N = lq.N;

nstate = size(A,1);

% Enforce symmetry of Q and R in case they are different due to numerical
% roundoff in computation
Q = (Q+Q.')/2;
R = (R+R.')/2;
R_half = R^(1/2);
R_half=(R_half+R_half.')/2;

%%
%% Defintion of LMIs
%%

setlmis([]);
S=lmivar(1, [nstate,1]);
X=lmivar(2, [1,1]);
Y=lmivar(2, [1,nstate]);

% Subject function, LMI #1
%               AS - BY + SA' - Y'B' + EE' < 0

lmiterm([1 1 1 S], A,  1, 's');                 % LMI #1:  AS + SA'
lmiterm([1 1 1 Y], B, -1, 's');                 % LMI #1: -BY - Y'B'
lmiterm([1 1 1 0], E*E');                       % LMI #1:  EE'

% Subject function, LMI #1a additional test constraint
%               AS - BY + SA' - Y'B' + EE' - a I > 0

%a = 1e5;
%lmiterm([-1 1 1 S], A,  1, 's');                   % LMI #1a:  AS + SA'
%lmiterm([-1 1 1 Y], B, -1, 's');                   % LMI #1a: -BY - Y'B'
%lmiterm([-1 1 1 0], E*E');                         % LMI #1a:  EE'
%lmiterm([-1 1 1 0], -a * eye(nstate));             % LMI #1a:  - a I

% Subject function, LMI #2: 
%               [ X         Sqrt(R)Y ]
%               [                    ]  > 0
%               [Y'Sqrt(R)      S    ]

lmiterm([-2 1 1  X], 1, 1);                      % LMI #2: X
lmiterm([-2 2 1 -Y], 1, R_half);                 % LMI #2: Y'*sqrt(R)
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lmiterm([-2 2 2  S], 1, 1);                      % LMI #2: S

% Subject function, LMI #3:
%               YCv' + gamma > 0 or -YCv' < gamma

lmiterm([-3 1 1 Y], 1, Cv');                     % LMI #3: YCv'
lmiterm([-3 1 1 0], gamma);                      % LMI #3: gamma

% Create the LMI system
lmisys = getlmis;

% Defining vector "c"
n = decnbr(lmisys);
c = zeros(n,1);
for i=1:n
   [Sj, Xj, Yj] = defcx(lmisys, i, S, X, Y);
   c(i) = trace(Q*Sj) + trace(Xj) - trace(Yj*N) - trace(N'*Yj');
end

% Solving LMIs
if (nargin == 2);
    options = [1e-30, 100, -1, 10, 1];
end;
[copt, xopt] = mincx (lmisys, c, options);

% Results
Xopt = dec2mat(lmisys, xopt, X);
Yopt = dec2mat(lmisys, xopt, Y);
Sopt = dec2mat(lmisys, xopt, S);

Kdis = Yopt*inv(Sopt);

A.5.2 Model Creation for N-DOF Structure

function [s]  = nstory2(n, m, T, mdr)

% NSTORY Creates a SS models of a simple n-story structure with an 
%   equation of motion of
%
%       M a + C v + K x = Sc Fc + Sg ag
%
%   in the form of
%       .
%       q = A q + B u + E w
%       z = Czq + Dzu + Ezw
%
%   It also returns three SS LTI object:
%
%        all_sys, lqr_sys, meas_sys
%
%
% SYNTAX
%
%   [sysmat] = nstory (n)
%       creates an SS model of a n-story shear frame structure where
%
%       n           is the number of story
%



169

%   and mass of the each story is 1e5 kgs, the period is 1 sec and the modal
%   damping ratio is 2 % of the critical damping
%
%   [sysmat] = nstory (n, mass, period, modal_damping_ratio)
%       creates an SS model of a n-story shear frame structure where
%
%       n           is the number of story
%       mass        is the mass of each story
%       period      is the period of each story
%       modal_damping_ratio
%                   is the modal damping ratio of each story
%
%       All units should be SI units (N, m, sec, kg)
%
%   sysmat is a cell array containing the matrices
%
%        A, B, E, Cz, Dz, Ez, Cv, M, C, K, Sc, Sg, eigvec, eigval
%
%   for the SS model
%       .
%       q = A q + B u + E w
%       z = Czq + Dzu + Ezw
%       v = Cvq    (velocity among the control device
%
%   where the states are the displacements and velocities wrt to the ground.
%   A controller is placed on the first floor by default. The outputs (4n+4)
%   are given as follows:
%
%       Displacements : n x 1
%       Velocities : n x 1
%       Drifts : n x 1
%       Absolute Accelerations : n x 1
%       Controller Displacement : 1 x 1
%       Controller Velocity : 1 x 1
%       Controller Force : 1 x 1
%       Ground Acceleration : 1 x 1
%
%   sysmat also contains the following LTI objects:
%
%   ALL_SYS
%   -------
%   Inputs :
%      1. Control Force : 1 x 1,        'u'
%      2. Ground Acceleration : 1 x 1,  'ag'
%
%   Outputs :
%      1. Displacements : n x 1,           'disp'
%      2. Velocities : n x 1,              'vel'
%      3. Drifts : n x 1,                  'drift'
%      4. Absolute Accelerations : n x 1,  'absacc'
%      5. Controller Displacement : 1 x 1, 'udisp'
%      6. Controller Velocity : 1 x 1,     'uvel'
%      7. Controller Force : 1 x 1,        'u'
%      8. Ground Acceleration : 1 x 1,     'ag'
%
%   LQR_SYS
%   -------
%   Inputs :
%      1. Control Force :1 x 1
%
%   Outputs :
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%      3. Drifts : n x 1
%      4. Absolute Accelerations : n x 1
%
%   MEAS_SYS
%   --------
%   Inputs :
%      1. Control Force :1 x 1
%      2. Ground Acceleration : 1 x 1
%
%   Outputs :
%      3. Drifts : n x 1
%      4. Absolute Accelerations : n x 1
%      8. Ground Acceleration : 1 x 1
%
%
%   written by Baris Erkus
%   ver 2.0 (beta)

if (nargin == 1);
    m = 1e5;
    T = 0.5;
    mdr = 0.02;
end;

% Compute the story stiffness from period
w = 2*pi/T;   k = m*w^2;

% Mass, stiffness and damping matrices
M = m * eye(n);
K = diag(-k*ones(n-1,1), -1) + diag([2*k*ones(n-1,1);k]) + diag(-k*ones(n-1,1), 1);

if n == 1
    [mods, eigvals] = eig(inv(M)*K);
    C = real(M * mods * (2 * mdr * sqrt(eigvals)) * mods');
else
    [mods, eigvals] = eigs(inv(M)*K, n, 0);
    C = real(M * mods * (2 * mdr * sqrt(eigvals)) * mods');
end

% Coefficent matrices for the SS representation
R = ones (n,1);

Sc = [1;  zeros(n-1, 1)];
Sg = - M * R;

T1 = eye(n) + diag(-1*ones(n-1,1), -1);
T2 = [1 , zeros(1, 2*n-1); zeros(1, n), 1, zeros(1, n-1); zeros(1, 2*n)];
T3 = [0;  0;  1];

% State-Space Matrices : Eqn of Motion

A = [zeros(n)  eye(n); -inv(M)*K,  -inv(M)*C];
B = [zeros(n,1);  inv(M)*Sc];
E = [zeros(n,1);  inv(M)*Sg];

%State-Space Matrices : Outputs
%    Disp & Vel    | Drift         |  Abs. Accel          |Cont. D,V,F  | Ground. Accel |;
%=======================================================================================
====

Cz = [eye(2*n)     ;  T1, zeros(n) ; -inv(M)*K, -inv(M)*C ;  T2         ;  zeros(1, 2*n)];
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Dz = [zeros(2*n,1) ;  zeros(n,1)   ;  inv(M)*Sc           ;  T3         ;  0            ];
Ez = [zeros(2*n,1) ;  zeros(n,1)   ;  zeros(n,1)          ;  zeros(3,1) ;  1            ];

Cv = Cz(4*n+2, :);

%%%%%%%%%%%%%%%%   SS MODELS   %%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%  1. ALL INPUTS and OUTPUTS  %%%

% Create an SS system with
%
% Inputs :
%     1. Control Force :1 x 1
%     2. Ground Acceleration : 1 x 1
%
% Outputs :
%     1. Displacements : n x 1
%     2. Velocities : n x 1
%     3. Drifts : n x 1
%     4. Absolute Accelerations : n x 1
%     5. Controller Displacement : 1 x 1
%     6. Controller Velocity : 1 x 1
%     7. Controller Force : 1 x 1
%     8. Ground Acceleration : 1 x 1

output_name_all_sys = {...
    [1     : n   ],  'disp'   ;
    [n+1   : 2*n ],  'vel'    ;
    [2*n+1 : 3*n ],  'drift'  ;
    [3*n+1 : 4*n ],  'absacc' ;
    [4*n+1       ],  'udisp'  ;
    [4*n+2       ],  'uvel'   ;
    [4*n+3       ],  'u'      ;
    [4*n+4       ],  'ag'      }; 

input_name_all_sys = {...
    [1           ],  'u'     ;
    [2           ],  'ag'     };

all_sys = ss(A, [B, E], Cz, [Dz Ez],...
    'InputGroup', input_name_all_sys,  'OutputGroup', output_name_all_sys  );

%%%  2. FOR LQR  %%%

% Create an SS system with
%
% Inputs :
%     1. Control Force :1 x 1
%
% Outputs :
%     3. Drifts : n x 1
%     4. Absolute Accelerations : n x 1

lqr_sys = all_sys({'drift', 'absacc'}, {'u'});

%%%  3. FOR MEASUREMENTS  %%%

% Create an SS system with
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%
% Inputs :
%     1. Control Force :1 x 1
%     2. Ground Acceleration : 1 x 1
%
% Outputs :
%     3. Drifts : n x 1
%     4. Absolute Accelerations : n x 1
%     8. Ground Acceleration : 1 x 1

meas_sys = all_sys({'drift', 'absacc', 'ag'}, {'u', 'ag'});

%%%%%%%%%    OUTPUTS    %%%%%%%%%%%

s.all_sys = all_sys;
s.lqr_sys = lqr_sys;
s.meas_sys = meas_sys;

s.M = M;
s.K = K;
s.C = C;

s.Sc = Sc;
s.Sg = Sg;

s.eigvec = mods;
s.eigval = eigvals;

s.A = A;
s.B = B;
s.E = E;

s.Cz = Cz;
s.Dz = Dz;
s.Ez = Ez;

s.Cv = Cv;

A.5.3 Base Isolated Benchmark Code Sample Simulation and Controller

a) Initialization file

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%               Smart Base-Isolated Benchmark Building
%       Part III: A Sample Controller for Bilinear Isolation
%
%             Baris Erkus      and      Erik A. Johnson
%           (erkus@usc.edu)            (JohnsonE@usc.edu)
%
% This file loads the variabeles that will be used in the control design
% and simulation into the workspace.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% File name          : part_III_initialization.m
% Version            : 2.2
% Release Date       : **/**/****
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% Report Bugs        : JohnsonE@usc.edu
%
% MATLAB Version     : 6.5.0.180913a (R13)
% Simulink Version   : 5.0 (R13)
% Control System
%  Toolbox Version   : 5.12 (R13)
% Windows Version    : MS Windows XP 5.1
%
%  Units             : tons, kN, m, sec.
%
% Abbrevations:
%       obv   : obvious
%       ELM   : equivalent linearized model
%       wrt   : with respect to
%       SS    : state-space
%       COM   : center of mass
%       EQ    : earthquake
%
% Needs:
%       nplace.m
%       cleaner.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Modifications
%    Version         Date                         Details
%  ___________   ____________   ___________________________________________         
%      2.2        02/01/2005      Corrected the comments, version numbers
%  and contact information, etc...
%      2.2        02/16/2005      Corrected units to tons, kN, m, sec
%
%
%

%%                                  %%
%%  PART I : Structural Paremeters  %%
%%                                  %%

nmodes = 24;
% Number of the modes of the superstructure.
% There are 8 stories. Each story has 3 DOFs.
% Totol DOFs is 24. Therefore,
% we have 24 modes.

nfloors = 8;
% obv

ncontrollers = 12;
% Number of control devices.

nrubber = 92; nlead = 61;
nelements = nrubber + nlead;
% Number of the linear rubber bearings,
% bilinear lead plugs.

contr_coor = [0,      0;
              0,      0;
         -17.25,  30.69;
         -17.25,  30.69;
         -17.25, -47.79;
         -17.25, -47.79;
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          12.53, -47.79;
          12.53, -47.79;
          32.83, -11.16;
          32.83, -11.16;
          32.83,  30.69;
          32.83,  30.69];
% Coordinates of the controllers. The origin of
% the coordinate system is the COM
% of the base. 

rubber_bearing_coor = ...
[1.82 , -47.79 ;            % Coordinates of the linear rubber bearings.
 -7.32 , -47.79 ;           % The origin of the coordinate system
 -17.25 , -47.79 ;          % is the COM of the base.
 -17.25 , -39.93 ;          % Note that the size is 92 x 2.
 -17.25 , -31.88 ;
 -17.25 , -24.05 ;
 -17.25 , -16.18 ;
 -17.25 , -8.35 ;
 -17.25 , -0.49 ;
 -17.25 , 7.35 ;
 -17.25 , 15.00 ;
 -17.25 , 22.83 ;
 -17.25 , 30.69 ;
 -7.32 , 30.69 ;
 1.82 , 30.69 ;
 10.21 , 30.69 ;
 18.17 , 30.69 ;
 25.97 , 30.69 ;
 32.83 , 30.69 ;
 32.83 , 23.04 ;
 32.83 , 15.21 ;
 32.83 , 7.35 ;
 32.83 , -0.49 ;
 32.83 , -11.16 ;
 25.97 , -11.16 ;
 18.17 , -11.16 ;
 12.53 , -16.18 ;
 12.53 , -24.05 ;
 12.53 , -31.88 ;
 12.53 , -39.75 ;
 12.53 , -47.79 ;
 -7.32 , 23.04 ;
 -7.32 , 15.21 ;
 -7.32 , 7.35 ;
 -7.32 , -0.49 ;
 -7.32 , -8.35 ;
 -7.32 , -16.18 ;
 -7.32 , -24.05 ;
 -7.32 , -31.88 ;
 -7.32 , -39.75 ;
 1.82 , 23.04 ;
 1.82 , 15.21 ;
 1.82 , 7.35 ;
 1.82 , -0.50 ;
 1.82 , -8.35 ;
 1.82 , -16.18 ;
 1.82 , -24.05 ;
 1.82 , -31.88 ;
 1.82 , -39.75 ;
 10.21 , 23.04 ;
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 10.21 , 15.21 ;
 10.21 , 7.35 ;
 10.21 , -0.49 ;
 18.17 , 23.04 ;
 18.17 , 15.21 ;
 18.17 , 7.35 ;
 18.17 , -0.49 ;
 25.97 , 23.04 ;
 25.97 , 15.21 ;
 25.97 , 7.35 ;
 25.97 , -0.49 ;
 -12.28 , -47.79 ;
 -2.80 , -47.79 ;
 7.10 , -47.79 ;
 -17.25 , -43.86 ;
 -17.25 , -36.03 ;
 -17.25 , -28.16 ;
 -17.25 , -20.33 ;
 -17.25 , -12.47 ;
 -17.25 , -4.63 ;
 -17.25 , 3.23 ;
 -17.25 , 11.06 ;
 -17.25 , 18.93 ;
 -17.25 , 26.76 ;
 -12.28 , 30.69 ;
 -2.41 , 30.69 ;
 6.00 , 30.69 ;
 14.17 , 30.69 ;
 22.07 , 30.69 ;
 29.41 , 30.69 ;
 32.83 , 26.88 ;
 32.83 , 19.11 ;
 32.83 , 11.28 ;
 32.83 , 3.41 ;
 32.83 , -5.82 ;
 29.35 , -11.16 ;
 22.07 , -11.16 ;
 12.53 , -11.16 ;
 12.53 , -20.12 ;
 12.53 , -27.95 ;
 12.53 , -35.81 ;
 12.53 , -43.65 ];

lead_plug_coor = ...
[ 1.82 , -47.79 ;
 -7.32 , -47.79 ;
 -17.25 , -47.79 ;          % Coordinates of the bilinear lead plugs.
 -17.25 , -39.93 ;          % The origin of the coordinate system
 -17.25 , -31.88 ;          % is the COM of the base.
 -17.25 , -24.05 ;          % Note that the size is 61 x 2.
 -17.25 , -16.18 ;
 -17.25 , -8.35 ;
 -17.25 , -0.49 ;
 -17.25 , 7.35 ;
 -17.25 , 15.00 ;
 -17.25 , 22.83 ;
 -17.25 , 30.69 ;
 -7.32 , 30.69 ;
 1.82 , 30.69 ;
 10.21 , 30.69 ;
 18.17 , 30.69 ;
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 25.97 , 30.69 ;
 32.83 , 30.69 ;
 32.83 , 23.04 ;
 32.83 , 15.21 ;
 32.83 , 7.35 ;
 32.83 , -0.49 ;
 32.83 , -11.16 ;
 25.97 , -11.16 ;
 18.17 , -11.16 ;
 12.53 , -16.18 ;
 12.53 , -24.05 ;
 12.53 , -31.88 ;
 12.53 , -39.75 ;
 12.53 , -47.79 ;
 -7.32 , 23.04 ;
 -7.32 , 15.21 ;
 -7.32 , 7.35 ;
 -7.32 , -0.49 ;
 -7.32 , -8.35 ;
 -7.32 , -16.18 ;
 -7.32 , -24.05 ;
 -7.32 , -31.88 ;
 -7.32 , -39.75 ;
 1.82 , 23.04 ;
 1.82 , 15.21 ;
 1.82 , 7.35 ;
 1.82 , -0.50 ;
 1.82 , -8.35 ;
 1.82 , -16.18 ;
 1.82 , -24.05 ;
 1.82 , -31.88 ;
 1.82 , -39.75 ;
 10.21 , 23.04 ;
 10.21 , 15.21 ;
 10.21 , 7.35 ;
 10.21 , -0.49 ;
 18.17 , 23.04 ;
 18.17 , 15.21 ;
 18.17 , 7.35 ;
 18.17 , -0.49 ;
 25.97 , 23.04 ;
 25.97 , 15.21 ;
 25.97 , 7.35 ;
 25.97 , -0.49 ];

contr_direc = nplace ([1, 2], ncontrollers/2, 'row');
% This is a vector of size "ncontroller". If
% the enrty is
% 1 : controller is in the x-direction
% 2 : controller is in the y-direction

elem_type = [ones(1, nrubber), 3 * ones(1, nlead)]; 
% This is a vector of size "nelements". If
% the enrty is
% 1 : isolation element is linear rubber
% bearing
% 3 : isolation element is bilinear lead plug

corner_coor1 = [-17.25,  30.69;   
               -17.25, -47.79;
                12.53, -47.79; 
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                32.83,  30.69];
% Corner coordinates of the base and
% 1st to 6th floors
% The origin of the coordinate system is the
% COM of the base. These values may
% differ the actual corner coordinate values.

corner_coor2 = [-17.25,  30.69;    
               -17.25, -47.79;
                12.53, -47.79; 
                12.53,  30.69];
% Corner coordinates of the 7th and
% 8th floors
% The origin of the coordinate system is the
% COM of the base. These values may
% differ the actual corner coordinate values.

for i = 1:7;    corner_coor{i} = corner_coor1; end;
for i = 8:9;    corner_coor{i} = corner_coor2; end;
% obv

ncorners = [size(corner_coor1,1)*ones(1,7),size(corner_coor2,1)*ones(1,2)];
% A vector of size 9 and entries are the number
% of corners.

max_ncorners = max(ncorners);
% obv

mass_basex = 3565.73;    mass_basey = mass_basex;   mass_baser = 2706868;
% Mass of the base, in the x, y-directions and
% rotational.

mass_superstr = ...
    [2051,  2051,  1560994;
    2051,  2051,  1560994;
    2051,  2051,  1560994;
    2051,  2051,  1560994;
    2051,  2051,  1560994;
    2057,  2057,  1560994;
    2247,  2247,  1705017;
    2580,  2580,  1957503];
% Mass of the superstructure, 8th floor to 1st
% floor, in the x, y-directions and rotational.

total_mass = sum([mass_superstr(:,1);  mass_basex]);
total_weight = 9.81 * total_mass;
% obv

rubber_stiff = 919.422;
lead_preyield_stiff = 5546.678;
lead_postyield_stiff = 1e-4;
lead_yield_disp = 0.023882523;
lead_yield_force = lead_yield_disp * lead_preyield_stiff;
% Stiffness values of the rubber
% bearings and lead plugs. Here in the
% ELM, the lead will have
% a linear stiffness equal to the preyield
% stiffness of the lead. Note that these values
% are obtained after the simplification
% in the models explained in the paper.
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rubber_damp = 101.439;
lead_damp = 207.0;
% Damping values of the rubber bearings and
% lead plugs. Note that these values are
% obtained after the simplification of the
% models explained in the paper.

eigenval = [49.6265.6691.05496.42557.82860.451674.41...
    1793.832858.653292.803511.065583.475743.955958.467453.32...
    7928.589248.479702.5010431.0811673.9412011.94...
    12912.8315828.7717720.57]; 
% Eigenvalues. 24 x 1

eigenvec = [Eigenvalue matrix wrt the base. 24 x 24. is not given here];

damp_rat = 0.05 * ones(1, 24);
% Modal damping ratios.

modal_freqs = eigenval.^0.5;
% Modal frequencies.

com_offset =[...
    0,         0
   -0.3500,   -1.4200
   -0.3200,   -5.8000
    0.1100,   -7.2000
    0.1600,   -9.2000
    0.1600,   -9.2000
    0.1600,   -9.2000
    0.1600,   -9.2000];
% Offset of the COMs wrt the COM of base. From 1st floor to the 8th floor.

b) Simulation File

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%               Smart Base-Isolated Benchmark Building
%       Part III: A Sample Controller for Bilinear Isolation
%
%             Baris Erkus      and      Erik A. Johnson
%           (erkus@usc.edu)            (JohnsonE@usc.edu)
%
% Simulation of the sample LQG controller%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% File name          : part_III_sample.m
% Version            : 2.2
% Release Date       : 05/06/2005
% Report Bugs        : JohnsonE@usc.edu
%
% MATLAB Version     : 6.5.0.180913a (R13)
% Simulink Version   : 5.0 (R13)
% Control System
%    Toolbox Version : 5.12 (R13)
% Windows Version    : MS Windows XP 5.1
%
%  Units             : ton, kN, m, sec.
%



179

% Abbrevations:
%       obv   : obvious
%       ELM   : equivalent linear(ized) model
%       wrt   : with respect to
%       SS    : state-space
%       COM   : center of mass
%       EQ    : earthquake
%
% Needs:
%       nplace.m, gamma_vals.mat
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Modifications
%    Version         Date                         Details
%  ___________   ____________   ___________________________________________         
%      2.1        02/24/2004      Updated according to the recent benchmark
%  problem. The COM offsets are added. S-function parameters are updated.
%      2.2        02/01/2005      Corrected the comments, version numbers
%  and contact information, etc...

clear all;  close all;
% obv

start_time = clock;

% PART I : Structural Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

initialization;
load gamma_vals;

% PART II : Earthquake and Gamma Information
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

act_integ_dt = 0.001;
unc_integ_dt = 0.001;
sa_integ_dt = 1e-5;
integ_dt = 0.001;
meas_dt  = 0.001;
data_dt  = 0.05;

eq_files = {...
        'newhall.txt',...
        'sylmar.txt',...
        'elcentro.txt',...
        'rinaldi.txt',...
        'kobe.txt',...
        'jiji.txt',...
        'erzincan.txt' };

eq_names ={
    'Newhall',...      
    'Sylmar',...
    'El Centro',...
    'Rinaldi',...
    'Kobe',...
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    'Jiji',...
    'Erzincan'};
% EQ data files. Herein, Jiji EQ data is modified. The
% original data is more than 30 secs. The file provided here is 30 secs.

eq_index = [1:7];
% Vector of the EQs that will be simulated. E.g., if you want to simulate
% Newhall, Kobe and Jiji, Erzincan set
% eq_index = [1, 5:7];

eq_scale = 0.01;
% This is immeditely applied to the EQ data.
% Original data is in cm/sec^2. The eq_scale
% parameter converts it to m/sec^2.

eq_dt = 0.005;
% obv.

aa = [10^(-3.0827), 10^(-3.9474), 3.548e-5]; 
bb = [10^(-1.4662), 10^(-0.7895), 2.279e-2];

for eq_i = 1:length(eq_index)

disp(['**************   Earthquake : ', eq_names{eq_index(eq_i)}, ' (',...
        num2str(eq_i), ' of ', num2str(length(eq_index)),...
        ')   **************' ]);
disp(' ');

eq_data = eq_scale * load(eq_files{eq_index(eq_i)}, '-ascii');
neq_data = max(size(eq_data));
eq_dim = min(size(eq_data));
eq_t = [0 : eq_dt : (neq_data - 1)*eq_dt]';
% Load the EQ data and form the time array.

EQ.time = eq_t;
EQ.signals.values = eq_data;
EQ.signals.dimensions = eq_dim;
% Create a cell object for the Simulink.

for gam_i = 2:2

if gam_i == 1;
    gamma_val = gamma_stiff_eq(eq_i);
    disp (['Gamma (', eq_names{eq_i}, ') = ', num2str(gamma_val),...
            '    (1 of 2)',]);
elseif gam_i==2;
    gamma_val = gamma_stiff_final;
    disp (['Gamma (final) = ', num2str(gamma_val),...
            '    (2 of 2)',]);
end

lead_stiff_ELM = lead_preyield_stiff*gamma_val;
lead_damp_ELM = lead_damp;
% Compute the ELM lead stiffness and specify the lead damping.



181

% PART III : Transformation Matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Details of these matrices are given in the paper.

for i = 1:ncontrollers;
    if contr_direc(i) == 1;
        rc{i} = [1; 0; -contr_coor(i,2)];      
    elseif contr_direc(i) == 2;
        rc{i} = [0; 1; contr_coor(i,1)] ;      
    end;
end;
% Forming the matrices rc_i

for i = 1:nelements;
    if elem_type(i) == 1;
        ris{i} = [1  0  0;
            0  1  0;
            -rubber_bearing_coor(i,2),  rubber_bearing_coor(i,1),   1];
    elseif elem_type(i) == 3;
        ris{i} = [1  0  0;
            0  1  0;
            -lead_plug_coor(i-nrubber,2),  lead_plug_coor(i-nrubber,1), 1];
    end;
end;
% Forming the matrices ris_i

bloc = [3 8 13 19 24 26 31 45]; % = output_loc_bearing
nbloc = length(bloc);
for i = 1:nbloc
    bx = rubber_bearing_coor(bloc(i), 1);
    by = rubber_bearing_coor(bloc(i), 2);
    rb{i} = [1  0  -by; 0  1  bx];
end

for i = 1:nfloors+1
    for j = 1:ncorners(i)
        p{i,j} = [1 0 -corner_coor{i}(j,2);  0  1  corner_coor{i}(j,1)];
    end
    if ncorners(i) < max_ncorners
        for j = cor(i)+1:max_corners
            p{i,j} = zeros (2,3);
        end
    end
    P{i} = cat(1, p{i,:});
end
% Forming the matrices P_i.

for i = 1:nfloors;
    r5i{i} = [1 0 -com_offset(i,2); 0 1 com_offset(i,1); 0 0 1];
end

for i = 1:nfloors;
    r5i_flip{i} = fliplr(r5i{i});
end

R1 = nplace(eye(3), nfloors, 'col');
R2 = nplace(eye(3), nfloors+1, 'col');
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R2c = cat(2, rc{:});
R2is = cat(2, ris{:});
R3 = [eye(2); zeros(1, 2)];
R4 = nplace(eye(2), nfloors+1, 'col');
R5 = fliplr(blkdiag(r5i_flip{:}));
R6 = [eye(2); 0, 0];        %Note: T4 * R2 * R6 = R4
R7 = cat(1, rb{:});
T1 = [zeros(3, nmodes), eye(3); R5*eigenvec , R1];
T2 = diag(ones(3*(nfloors+1), 1)) - diag(ones(3*nfloors, 1),-3);
T3 = blkdiag(P{:});
T4 = nplace(R6', nfloors+1, 'diag');
T5 = cat(1, r5i{nfloors:-1:1}, eye(3));
T6 = [[eigenvec; zeros(3, 3*nfloors)], T5 ];
% Transformation matrices. See the paper for
% the details. (Some of these matrices do not appear in the paper.
% These are used in the nonlinear analysis block. See the Simulink
% files to explore these matrices.)

% PART IV : Mass, Stiffness and Damping Matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Mb = diag([mass_basex, mass_basey, mass_baser]);
% Mass matrix of the base.

Ms = diag( mass_superstr(1,:) );
for i = 2:nfloors; Ms = blkdiag( Ms, diag(mass_superstr(i,:)) ); end;
% Mass matrix of the superstructure. From 8th floor to 1st floor.

M = [eye(nmodes), eigenvec'*Ms*R1;  R1'*Ms*eigenvec,  R1'*Ms*R1 + Mb];
% Mass matrix for the whole structure.
% This is not a 100% 'mass' matrix. See the paper for details.

% Stiffness matrices includes
%   a. stiffness provided by rubber,
%   b. stiffness provided by lead.
% In the nonlinear structure the stiffness matrices include
% only (a). Below we compute (a) and (b) and the total stiffness matrices.

Ks = diag(eigenval);
% Modal stiffness matrix of the superstructure.

Kis_rubber = [rubber_stiff 0 0; 0 rubber_stiff 0 ; 0 0 0];
Kis_lead = [lead_stiff_ELM 0 0; 0 lead_stiff_ELM 0 ; 0 0 0];
% obv

%%% a. Stiffness for rubber only %%%
for i = 1:nelements;
    if elem_type(i) == 1;
        kis_rubber{i} = Kis_rubber;
    elseif elem_type(i) == 3;
        kis_rubber{i} = zeros(3);
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    end;
end;
% Forming the kis matrices for rubber only.

Kis_rubber_base = blkdiag(kis_rubber{:});
Kb_rubber =  R2is * Kis_rubber_base * R2is';
% Forming the base stiffness matrix for rubber.

K_rubber = blkdiag (Ks, Kb_rubber);
% Stiffness matrix that includes rubber stiffness only.
% See the paper for the details

%%% a. Stiffness for lead only %%%
for i = 1:nelements;
    if elem_type(i) == 1;
        kis_lead{i} = zeros(3);
    elseif elem_type(i) == 3;
        kis_lead{i} = Kis_lead;
    end;
end;
% Forming the kis matrices for lead only.

Kis_lead_base = blkdiag(kis_lead{:});
Kb_lead =  R2is * Kis_lead_base * R2is';
% Forming the base stiffness matrix for lead.

K_lead = blkdiag (Ks, Kb_lead);
% Stiffness matrix that includes lead stiffness only.
% See the paper for the details

%%% Stiffness for rubber and lead %%%
for i = 1:nelements;
    if elem_type(i) == 1;
        kis{i} = Kis_rubber;
    elseif elem_type(i) == 3;
        kis{i} = Kis_lead;
    end;
end;
% Forming the kis matrices.

Kis = blkdiag(kis{:});
Kb =  R2is * Kis * R2is';
% Forming the base stiffness matrix.

K = blkdiag (Ks, Kb);
% Stiffness matrix that includes both lead and rubber stiffness only.
% See the paper for the details
% Note that Kb = Kb_rubber + Kb_lead.

% Damping matrices includes
%   a. damping from rubber,
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%   b. damping from lead.
% In the nonlinear structure the damping matrices include
% only (a). Below we compute (a) and (b) and the total damping matrices.

Cs = diag(2 * damp_rat .* modal_freqs);
% Modal damping matrix for the superstructure.

Cis_rubber = [rubber_damp 0 0; 0 rubber_damp 0 ; 0 0 0];
Cis_lead = [lead_damp_ELM 0 0; 0 lead_damp_ELM 0 ; 0 0 0];
% obv

%%% a. Damping for rubber only %%%
for i = 1:nelements;
    if elem_type(i) == 1;
        cis_rubber{i} = Cis_rubber;
    elseif elem_type(i) == 3;
        cis_rubber{i} = zeros(3);
    end;
end;
% Forming the cis matrices for rubber only.

Cis_rubber_base = blkdiag(cis_rubber{:});
Cb_rubber =  R2is * Cis_rubber_base * R2is';
% Forming the base damping matrix for rubber.

C_rubber = blkdiag (Cs, Cb_rubber);
% Damping matrix that includes rubber stiffness only.
% See the paper for the details

%%% b. Damping for lead only %%%
for i = 1:nelements;
    if elem_type(i) == 1;
        cis_lead{i} = zeros(3);
    elseif elem_type(i) == 3;
        cis_lead{i} = Cis_lead;
    end;
end;
% Forming the cis matrices for rubber only.

Cis_lead_base = blkdiag(cis_lead{:});
Cb_lead =  R2is * Cis_lead_base * R2is';
% Forming the base damping matrix for rubber.

C_lead = blkdiag (Cs, Cb_lead);
% Damping matrix that includes lead stiffness only.
% See the paper for the details

%%% Damping for rubber and lead %%%
for i = 1:nelements;
    if elem_type(i) == 1;
        cis{i} = Cis_rubber;
    elseif elem_type(i) == 3;
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        cis{i} = Cis_lead;
    end;
end;
% Forming the cis matrices.

Cis = blkdiag(cis{:});
Cb =  R2is * Cis * R2is';
% Forming the base damping matrix.

C = blkdiag (Cs, Cb);
% Damping matrix that includes both lead and rubber stiffness only.
% See the paper for the details
% Note that Cb = Cb_rubber + Cb_lead.

% PART V : Influence Matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

S1 =  [zeros(nmodes, 3);  eye(3)];
S2 = -[eigenvec' * Ms * R1;   R1' * Ms * R1 + Mb] * R3;
S3 =  [zeros(nmodes, 3);  eye(3)];
% Influence matrices.
% See the paper for the details

% PART VI : State-space Matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A = [zeros(nmodes+3), eye(nmodes+3);   -inv(M)*K,   -inv(M)*C];
B = [zeros(nmodes+3, ncontrollers); inv(M)*S1*R2c];
E = [zeros(nmodes+3, 2);  inv(M)*S2];
% SS-matrices of the equation of motion of the ELM.

% Here, we give several outputs to be used in the controller and Kalman
% estimator design:

Cout{1} = [T1,  zeros(nmodes+3)];
Dout{1} = zeros (3+3*nfloors, ncontrollers); 
Eout{1} = zeros (3+3*nfloors, 2);
% Displacements of the floor COMs wrt the ground including the base.

Cout{2} = T1 * [-inv(M)*K, -inv(M)*C];
Dout{2} = T1 * [inv(M)*S1*R2c];
Eout{2} = T1 * [inv(M)*S2] + R2*R6;   
% Absolute accelerations of the floor COMs including the base.

Cout{3} = T1 * [-inv(M)*K, -inv(M)*C];
Dout{3} = T1 * [inv(M)*S1*R2c];
Eout{3} = T1 * [inv(M)*S2];
% Acceleration of the floor COMs wrt the ground including the base.

Cout{4} = T2 * [T1,  zeros(nmodes+3)];
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Dout{4} = T2 * zeros (3+3*nfloors, ncontrollers); 
Eout{4} = T2 * zeros (3+3*nfloors, 2);
% Drifts of the COMs of each story including the base.

Cout{5} = T3 * T2 * [T1,  zeros(nmodes+3)];
Dout{5} = T3 * T2 * zeros (3+3*nfloors, ncontrollers); 
Eout{5} = T3 * T2 * zeros (3+3*nfloors, 2);
% Drifts of the corners of each story including the base.

Cout{6} = [zeros(3, nmodes),  eye(3), zeros(3, nmodes+3)];
Dout{6} = zeros (3, ncontrollers); 
Eout{6} = zeros (3, 2);
% Drifts of the COM of the base.

Cout{7} = zeros(2, 2*(nmodes+3) );
Dout{7} = zeros(2, ncontrollers);
Eout{7} = eye(2);   
% Absolute ground accelerations.

Cout{8} = (R2c)' * [zeros(3, nmodes),  eye(3), zeros(3, nmodes+3)];
Dout{8} = (R2c)' * zeros (3, ncontrollers); 
Eout{8} = (R2c)' * zeros (3, 2);
% Drifts of the controllers. 

Cout{9} = T4 * T1 * [-inv(M)*K, -inv(M)*C];
Dout{9} = T4 * T1 * [inv(M)*S1*R2c];
Eout{9} = T4 * T1 * [inv(M)*S2] + T4*R2*R6;   % Note that T4*R2*R6 = R4 
% Absolute accelerations of the floor COMs in the x and y-directions
% only, including the base.

Cout{10} = Kb_lead * [zeros(3, nmodes),  eye(3), zeros(3, nmodes+3)];
Dout{10} = zeros (3, ncontrollers); 
Eout{10} = zeros (3, 2);
% Lead plug forces due to the stiffness.

Cout{11} = Cb_lead * [zeros(3, 2*nmodes+3),  eye(3)];
Dout{11} = zeros (3, ncontrollers); 
Eout{11} = zeros (3, 2);
% Lead plug forces due to the damping.

Cout{12} = Kb_lead * [zeros(3, nmodes),  eye(3), zeros(3, nmodes+3)] +...
    Cb_lead * [zeros(3, 2*nmodes+3),  eye(3)];
Dout{12} = zeros (3, ncontrollers); 
Eout{12} = zeros (3, 2);
% Lead plug forces.

Cout{13} = [zeros(3, 2*nmodes+3),  eye(3)];
Dout{13} = zeros (3, ncontrollers); 
Eout{13} = zeros (3, 2);
% Velocity of the COM of the base wrt the ground.
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out_floor = [0,  5,  8];    % Zero is the base.
% This is an index for optional floor response outputs. For example
% if you want to get the response of the base, 3rd 4th and 5th floors
% use
% out_floor = [0, 3:5];
% below we compute the optional floor displacements and absolute
% accelerations.

for i = 1:length(out_floor)
    out_floor_index_temp1{i} = [out_floor(i)*3+1 : (out_floor(i)+1)*3];
    out_floor_index_temp2{i} = [out_floor(i)*2+1 : (out_floor(i)+1)*2];
end
out_floor_index = cat(2, out_floor_index_temp1{:});
out_floor_index_xy = cat(2, out_floor_index_temp2{:});
special_out_size = length(out_floor_index);
special_out_size_xy = length(out_floor_index_xy);

% Special output index.
Cout{14} = Cout{1}(out_floor_index, :);
Dout{14} = Dout{1}(out_floor_index, :);
Eout{14} = Eout{1}(out_floor_index, :);
% Special output : Displacements of the desired floors wrt the ground.

Cout{15} = Cout{2}(out_floor_index, :);
Dout{15} = Dout{2}(out_floor_index, :);
Eout{15} = Eout{2}(out_floor_index, :);
% Special output : Absolute accelerations of the desired floors
% wrt the ground.

Cout{16} = [zeros(ncontrollers, nmodes*2+3), R2c'];
Dout{16} = [zeros(ncontrollers, ncontrollers)];
Eout{16} = [zeros(ncontrollers, 2)];
% Velocities of the control devices

Cout{17} = [zeros(2*nbloc, nmodes), R7, zeros(2*nbloc, nmodes+3)];
Dout{17} = [zeros(2*nbloc, ncontrollers)];
Eout{17} = [zeros(2*nbloc, 2)];
% Drifts of the specified rubber bearings

fl_xy = [4:(nfloors+1)*3];
temp = [3:3:nfloors*3];
fl_xy(temp) = [];

Cout{18} = Cout{4}(fl_xy, :);
Dout{18} = Dout{4}(fl_xy, :);
Eout{18} = Eout{4}(fl_xy, :);
%Drifts of the COM of the floors in the x&y-directions only without base

Cout{19} = eye(size(A,1));
Dout{19} = zeros(size(B));
Eout{19} = zeros(size(E));
%States

epsilon =  1e-14;
for i = 1 : length(Cout)
    Cout{i} = Cout{i} .* (abs(Cout{i}) > epsilon);
    Dout{i} = Dout{i} .* (abs(Dout{i}) > epsilon);
    Eout{i} = Eout{i} .* (abs(Eout{i}) > epsilon);
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end
% We round very small numbers to zero to avoid
% additional numerical errors. These numbers
% are in fact zero, but during the computation
% of SS matrices, they appear to be a number very close to
% zero due to the multiplication of the
% influence and transformation matrices.

% PART VII : Controller Design
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This section is devoted to the controller design. At the end of this
% section, the user must provide a LTI-SS object called 'rlqg'. (In the
% simulink file, the default controller object is 'rlqg'. If you want to
% use another name for this object, you have to modify the controller
% blocks in the simulink file.) This object
% must be formed such that it takes the measurements as input and gives the
% control force vector as output. The user should carefully understand how
% the controller force is then attached to the nonlinear analysis block
% (s-function) in the 'part_III_nonlinear_simulation.mdl' simulink file.
% It is user's responsibility to arrange the object 'rlqg' and the
% connection between the controller and the nonlinear analysis block in the
% simulink file correctly.
% In our sample controller, we provide a function that outputs the object
% 'rlqg'.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%          SAMPLE CONTROLLER          %%%%%%%%%%%%%%%%%%%%%%%%

%aa = 3.5e-5;
%bb = 2.3e-2;

% a. LQ Design system.
% The outputs to be minimized are
% 5. Corner drifts of each floor,
% 9. Absolute accelerations of each floor in the x and y-directions.

sys_LQ.A = A;
sys_LQ.B = B;
sys_LQ.E = E;

sys_LQ.Cz = cat ( 1, Cout{ [5, 9] } );
sys_LQ.Dz = cat ( 1, Dout{ [5, 9] } );
sys_LQ.Ez = cat ( 1, Eout{ [5, 9] } );
% SS matrices for the output equation.

% b. Kalman Filter system
% The measurements are
% 8. Controller drifts,
% 9. Absolute accelerations of each floor in the x and y-direc,
% 7. Absolute ground accelerations.

sys_Kalman.A = A;
sys_Kalman.B = B;
sys_Kalman.E = E;

sys_Kalman.Cv = cat ( 1, Cout{ [8, 9, 7] } );
sys_Kalman.Dv = cat ( 1, Dout{ [8, 9, 7] } );
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sys_Kalman.Ev = cat ( 1, Eout{ [8, 9, 7] } );
% SS matrices for the measurement equation.

for iii = 1:length(aa);
%for bi = 1:length(bb);
ai = iii; bi = iii;
a = aa(ai);
b = bb(bi);

disp(' ');
disp(['a & b are ', num2str(iii), ' of ', num2str(length(aa))]);
disp('*************************************************************** ');

[rlqg, sys_closed_dis, Kc_act] = controller(a, b, sys_LQ, sys_Kalman,...
    nfloors, max_ncorners, modal_freqs);

temp_sys_LQ = ss (sys_LQ.A, [sys_LQ.B, sys_LQ.E],...
    sys_LQ.Cz, [sys_LQ.Dz, sys_LQ.Ez]);

nu = size(sys_LQ.Dz, 2);
nw = size(sys_LQ.Ez, 2);
nout = size(sys_LQ.Dz, 1);
% Size of the controller and the excitation.
% Note that nu = ncontrollers.

wg=17; zg=0.3; Gkt=tf([0  2*zg*wg  wg^2], [1  2*zg*wg  wg^2]);
KT = [eye(nu),  zeros(nu, nw);  zeros(nw, nu),  Gkt*eye(nw)];

%%%%%% COMPUTATION OF Cv FOR DISSIPATIVITY ANALYSIS %%%%%%%%
sys_Cv = ss(A, [B, E], Cout{16}, [Dout{16}, Eout{16}]) * KT;
Cv = sys_Cv.C;

%%%%%%%%%%%%       This concludes the controller design.     %%%%%%%%%%%%

% PART IX : Parameters for Nonlinear Simulations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K_nonlin = K_rubber;
C_nonlin = C_rubber;
% Stiffness matrix for the whole structure.
% This is not the actual stiffness matrix. See
% the paper for the details. Stiffness of the
% lead is not included. Lead force is a
% nonlinear force.

yield_dis = [lead_yield_disp*ones(nlead, 2); zeros(nrubber,2) ];
post_preyield_ratio = lead_postyield_stiff / lead_preyield_stiff;
post_preyield_stiff = [post_preyield_ratio*ones(nlead, 2);...
    zeros(nrubber,2) ];
yield_force = [lead_yield_force*ones(nlead, 2); zeros(nrubber,2) ];
% Lead plug properties.

%integ_dt = 0.005;
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%meas_dt = 0.005;
tol_nonlin = 1e-3;
norm_nonlin = 1e4;
newmark_beta = 0.25;
newmark_gamma = 0.5;
angle_inci = 0;
A1 = 1 / (newmark_beta * (integ_dt^2));
A2 = 1 / (newmark_beta * integ_dt);
A3 = 1 / (2 * newmark_beta);
A4 = newmark_gamma / (newmark_beta * integ_dt);
A5 = newmark_gamma / newmark_beta;
A6 = integ_dt * (newmark_gamma / (2 * newmark_beta) - 1);
sk = A1*(T6' * blkdiag(Ms, Mb) * T6) + A4*C_nonlin + K_nonlin;
% Nonlinear analysis parameters.

output_loc_bearing = [3 8 13 19 24 26 31 45];
% obv.

%%%%%%%%%%  Transfer functions for the Simulink  %%%%%%%%%
for i = 1:ncontrollers;
    if contr_direc(i) == 1;
        sim_T1(i,i) = 1;
    elseif contr_direc(i) == 2;
        sim_T1(i, ncontrollers+i) = 1;
    end;
end;

temp1 = nplace (eye(3), (nfloors+1), 'xdiag');
temp2 = [zeros((nfloors)*3,(nfloors+1)*3);
    [zeros(3), nplace(eye(3), (nfloors), 'row') ]];

sim_T2 = temp1 + temp2;
sim_T3 = nplace(R6, nfloors+1, 'xdiag');;
sim_T4 = nplace(eye(2),nfloors+1, 'row');
sim_T5 = R2c;
sim_T6 = T2;   sim_T6([3:3:3*(nfloors+1)], :) = [];

% Transfer functions for the simulation.
% sim_T1 : Rearranges the force vector to be fed
% into the s-function box,
% sim_T2 : Finds displacements wrt ground from
% displacements wrt base,
% sim_T3 : Finds accelerations wrt ground from
% accelerations wrt base,
% sim_T4 : Rearranges the ground accelerations,
% sim_T5 : Finds the controller displacements
% from the base displacements.
% sim_T6 : finds drifts in the x and
% y-directions from the displacements

% Inputs to the nonlinear analysis S-function box %

%INPUT                  VALUE
%========               ================
integ_time           =  integ_dt;
BET                  =  newmark_beta;
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GAM                  =  newmark_gamma;
n_acc_records        =  eq_dim;
transf_matrix        =  T6;
assembled_mass       =  blkdiag(Ms, Mb);
R                    =  T5;
loadmult             =  1;   % Note that EQ data is already scaled!
tolerance            =  tol_nonlin;
transf_mass          =  T6' * blkdiag(Ms, Mb) * T6;
assembled_damping    =  C_nonlin;
assembled_stiff      =  K_nonlin;
SK                   =  sk;
bearingloc_x         =  [lead_plug_coor(:,1)',  rubber_bearing_coor(:,1)'];
bearingloc_y         =  [lead_plug_coor(:,2)',  rubber_bearing_coor(:,2)'];
element_type         =  [3*ones(nelements,1),...
    [3*ones(nlead,1); ones(nrubber,1)]];
diff_max_min_fric    =  zeros(nelements, 2);
trans_coeff_fric     =  zeros(nelements, 2);
coeff_fric           =  zeros(nelements, 2);
normalizer           =  norm_nonlin;
angle_inci           =  angle_inci;
yield_dis            =  yield_dis;
post_preyield_stiff  =  post_preyield_stiff;
yield_force          =  yield_force;
retained_modes       =  nmodes;
nfloors              =  nfloors;
nbearings            =  nelements;
normalforce_sliding  =  zeros(nelements, 1);
output_loc_bearing   =  output_loc_bearing;
output_num           =  length(output_loc_bearing);
ndevices             =  ncontrollers;
deviceloc_x          =  contr_coor(:,1)';
deviceloc_y          =  contr_coor(:,2)';
recen_stiff          =  zeros(nelements, 1);
viscous_fric         =  zeros(nelements, 1);
viscous_lrb          =  zeros(nelements, 1);

% PART XI : Simulations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp('    Uncontrolled Simulation in progress...');
sim('uncontrolled');
disp('    Uncontrolled Simulation finished.');
disp(' ');

disp('    Active Nonlinear Simulation in progress...');
sim('active');
disp('    Active Nonlinear Simulation finished.');
disp(' ');

disp('    Semiactive Nonlinear Simulation in progress...');
sim('semiactive');
disp('    Semiactive Nonlinear Simulation finished.');
disp(' ');

ndata_t = length(u_act(:,1));
% PART XI : Performance Indices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% J1 : Peak isolation shear normalized by the uncontrolled
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R_temp = nplace(eye(2), nfloors+1, 'row');
Ms_temp = mass_superstr(nfloors:-1:1,1:2)'; Ms_temp=diag(Ms_temp(:));
M_temp = blkdiag(Mb(1:2, 1:2), Ms_temp);

iso_shear_unc  = (R_temp * M_temp * abs_acc_unc' )';
iso_shear_act  = (R_temp * M_temp * abs_acc_act' )';
iso_shear_sact = (R_temp * M_temp * abs_acc_sact')';

max_iso_shear_unc  = max(max(abs(iso_shear_unc (:, 1:2))));
max_iso_shear_act  = max(max(abs(iso_shear_act (:, 1:2))));
max_iso_shear_sact = max(max(abs(iso_shear_sact(:, 1:2))));

J_act {1,eq_i}(ai, bi) = max_iso_shear_act /max_iso_shear_unc;
J_sact{1,eq_i}(ai, bi) = max_iso_shear_sact/max_iso_shear_unc;

%%% J2 : Peak base shear normalized by the uncontrolled

R_temp = nplace(eye(2), nfloors, 'row');

base_shear_unc  = (R_temp * Ms_temp * (abs_acc_unc(:, 3:2*(nfloors+1))'))';
base_shear_act  = (R_temp * Ms_temp *...
    (abs_acc_act (:, 3:2*(nfloors+1))'))';
base_shear_sact = (R_temp * Ms_temp *...
    (abs_acc_sact(:, 3:2*(nfloors+1))'))';

max_base_shear_unc  = max(max(abs(base_shear_unc )));
max_base_shear_act  = max(max(abs(base_shear_act )));
max_base_shear_sact = max(max(abs(base_shear_sact)));

J_act {2,eq_i}(ai, bi) = max_base_shear_act /max_base_shear_unc;
J_sact{2,eq_i}(ai, bi) = max_base_shear_sact/max_base_shear_unc;

%%% J3 : Peak base displacement normalized by the uncontrolled disp

max_iso_disp_unc  = max(max(abs(iso_disp_unc )));
max_iso_disp_act  = max(max(abs(iso_disp_act )));
max_iso_disp_sact = max(max(abs(iso_disp_sact)));

J_act {3,eq_i}(ai, bi) = max_iso_disp_act /max_iso_disp_unc;
J_sact{3,eq_i}(ai, bi) = max_iso_disp_sact/max_iso_disp_unc;

%%% J4 : Peak drifts normalized by the uncontrolled

max_drift_unc  = max(max(abs(drift_unc )));
max_drift_act  = max(max(abs(drift_act )));
max_drift_sact = max(max(abs(drift_sact)));

J_act {4,eq_i}(ai, bi) = max_drift_act /max_drift_unc;
J_sact{4,eq_i}(ai, bi) = max_drift_sact/max_drift_unc;

%%% J5 : Peak abs accelerations normalized by the uncontrolled

max_abs_acc_unc  = max(max(abs(abs_acc_unc )));
max_abs_acc_act  = max(max(abs(abs_acc_act )));
max_abs_acc_sact = max(max(abs(abs_acc_sact)));
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J_act {5,eq_i}(ai, bi) = max_abs_acc_act /max_abs_acc_unc;
J_sact{5,eq_i}(ai, bi) = max_abs_acc_sact/max_abs_acc_unc;

%%% J6 : Peak controller force normalized by the peak controlled base
%%% shear

total_contr_force_act  = u_act *R2c'; %assuming u_act is N x ncontroller
total_contr_force_sact = u_sact*R2c'; %assuming u_act is N x ncontroller

max_total_contr_force_act  = ...
    max(max(abs(total_contr_force_act (:, 1:2))));
max_total_contr_force_sact = ...
    max(max(abs(total_contr_force_sact(:, 1:2))));

J_act {6,eq_i}(ai, bi) = max_total_contr_force_act /max_iso_shear_unc;
J_sact{6,eq_i}(ai, bi) = max_total_contr_force_sact/max_iso_shear_unc;

%%% J7 : RMS base disp normalized by the uncontrolled

max_rms_iso_disp_unc  = max(sqrt(sum(iso_disp_unc .^2)/ndata_t));
max_rms_iso_disp_act  = max(sqrt(sum(iso_disp_act .^2)/ndata_t));
max_rms_iso_disp_sact = max(sqrt(sum(iso_disp_sact.^2)/ndata_t));

J_act {7,eq_i}(ai, bi) = max_rms_iso_disp_act /max_rms_iso_disp_unc;
J_sact{7,eq_i}(ai, bi) = max_rms_iso_disp_sact/max_rms_iso_disp_unc;

%%% J8 : RMS absolute floor acc normalized with the uncontrolled

max_rms_acc_unc  = max(sqrt(sum(abs_acc_unc .^2)/ndata_t));
max_rms_acc_act  = max(sqrt(sum(abs_acc_act .^2)/ndata_t));
max_rms_acc_sact = max(sqrt(sum(abs_acc_sact.^2)/ndata_t));

J_act {8,eq_i}(ai, bi) = max_rms_acc_act /max_rms_acc_unc;
J_sact{8,eq_i}(ai, bi) = max_rms_acc_sact/max_rms_acc_unc;

%%% J9 : Energy absorbed by all control devices normalized by energy
%%% input into the controlled structure

energy_input_act      = sum(sum( iso_shear_act .* ground_vel * data_dt));
energy_abs_contr_act  = sum(sum(-u_act  .* u_vel_act  * data_dt));
energy_input_sact     = sum(sum(iso_shear_sact .* ground_vel * data_dt));
energy_abs_contr_sact = sum(sum(-u_sact .* u_vel_sact * data_dt));

J_act {9,eq_i}(ai, bi) = energy_abs_contr_act /energy_input_act;
J_sact{9,eq_i}(ai, bi) = energy_abs_contr_sact/energy_input_sact;

%%% J10 : Peak controller force normalized by total weight of the
%%% structure

J_act {10,eq_i}(ai, bi) = max_total_contr_force_act /total_weight;
J_sact{10,eq_i}(ai, bi) = max_total_contr_force_sact/total_weight;

%%% J11 : RMS Floor Drifts normalized with the uncontrolled
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max_rms_drift_unc  = ...
    max(sqrt(sum( drift_unc .^2)/ndata_t ));
max_rms_drift_act  =...
    max(sqrt(sum( drift_act .^2)/ndata_t ));
max_rms_drift_sact =...
    max(sqrt(sum( drift_sact.^2)/ndata_t ));

J_act {11,eq_i}(ai, bi) = max_rms_drift_act /max_rms_drift_unc;
J_sact{11,eq_i}(ai, bi) = max_rms_drift_sact/max_rms_drift_unc;

%%% D1 : Dissiptivity (D%)

D_act    {1, eq_i}{ai, bi} = sum((u_act    .*u_vel_act  < 0), 1)'/ndata_t;
D_sact_lq{1, eq_i}{ai, bi} = sum((u_sact_lq.*u_vel_sact < 0), 1)'/ndata_t;

rms_u_act     = sqrt(sum(u_act     .^2))/ndata_t;
rms_u_sact_lq = sqrt(sum(u_sact_lq .^2))/ndata_t;

w_norm_act     = rms_u_act    /sum(rms_u_act);
w_norm_sact_lq = rms_u_sact_lq/sum(rms_u_sact_lq);

D_norm_act    {1, eq_i}(ai,bi) = ...
    sum(D_act    {1, eq_i}{ai, bi}.*w_norm_act'    );
D_norm_sact_lq{1, eq_i}(ai,bi) = ...
    sum(D_sact_lq{1, eq_i}{ai, bi}.*w_norm_sact_lq');

%%% D2 : Dissipativity (De)

cov_states = covar(sys_closed_dis, eye(2));

D_act{2, eq_i}{ai, bi} = diag(-Kc_act * cov_states * Cv');

rms_u_cov_act{ai, bi} = sqrt(diag(Kc_act * cov_states * Kc_act'));
rms_v_cov_act{ai, bi} = sqrt(diag(Cv * cov_states * Cv'));

w_norm_cov_act = rms_u_cov_act{ai,bi}/sum(rms_u_cov_act{ai,bi});

D_norm_act{2, eq_i}(ai,bi) = sum(D_act{2, eq_i}{ai, bi}.*w_norm_cov_act);

%%% J14 : Dissipativity (Dne)

D_act{3, eq_i}{ai, bi} = D_act{2, eq_i}{ai, bi}./...
    (rms_u_cov_act{ai, bi}.*rms_v_cov_act{ai, bi});

D_norm_act{3, eq_i}(ai,bi) = sum(D_act{3, eq_i}{ai, bi}.*w_norm_cov_act);

end %iii

end %gamma
end %eqi

end_time = clock;
convtime = [0, 0, 24*60*60, 60*60, 60, 1]'; 
time_passed = end_time - start_time;
run_time = [num2str(time_passed * convtime), 'secs'];
disp(['Total running time = ', run_time]);
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save('mbestJs', 'J_act', 'D_act', 'D_norm_act', ...
    'J_sact', 'D_sact_lq', 'D_norm_sact_lq', ...
    'aa', 'bb', ...
    'eq_names', 'eq_index');

c) Sample Controller

function [rlqg, sys_closed_dis, Kc] = controller(a, b, sys_LQ, sys_Kalman,...
    nfloors, max_ncorners, modal_freqs)

%  A Sample Controller for the Base Isolation Prooblem - Part III
%
%  See the paper
%
%    SMART BASE ISOLATED BENCHMARK BUILDING PART III: A SAMPLE CONTROLLER
%    FOR BILINEAR ISOLATION by B. Erkus and E. A. Johnson
%
%  for the details.
%
%                                   B. Erkus (03/12/04)

%%%%%%%%%%%    LQ DESIGN    %%%%%%%%%%%

temp_sys_LQ = ss (sys_LQ.A, [sys_LQ.B, sys_LQ.E],...
    sys_LQ.Cz, [sys_LQ.Dz, sys_LQ.Ez]);

nu = size(sys_LQ.Dz, 2);
nw = size(sys_LQ.Ez, 2);
nout = size(sys_LQ.Dz, 1);
% Size of the controller and the excitation.
% Note that nu = ncontrollers.

wg=17; zg=0.3; Gkt=tf([0  2*zg*wg  wg^2], [1  2*zg*wg  wg^2]);
KT = [eye(nu),  zeros(nu, nw);  zeros(nw, nu),  Gkt*eye(nw)];
% Transfer function of the Kanai-Tajimi filter.

sys_KT = temp_sys_LQ * KT;
% Augmented system.

uindex = [1 : nu];
sys_LQ =  sys_KT(:, uindex);
% Form the system to be used in the LQ design.

% LQG Controller parameters
%a = 3.5e-5;
a_f = [1, 0*ones(1, nfloors)];
%b = 2.3e-2;
% a: weight on the base column drift
% b: weight on the absolute floor accelerations
% a_f : wight on the floor drifts

%% Below we compute the LQ weights %%
al = cell(nfloors+1, max_ncorners);
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al(:,:) = {sqrt(1/2) * ones(1,2)};

for i =1:nfloors+1;
    for j = 1:max_ncorners;
        alp{i,j} = [(al{i,j}(1))^2  0; 0  (al{i,j}(2))^2];
    end;
    alph{i} = a_f(i) * blkdiag(alp{i,:});
end;
Alpha = blkdiag(alph{:});

wx = sqrt(modal_freqs(1)^2 + modal_freqs(4)^2 + modal_freqs(7)^2);
wy = sqrt(modal_freqs(2)^2 + modal_freqs(5)^2 + modal_freqs(8)^2);

be = sqrt(1/2) * ones(nfloors+1, 2);
for i = 1:nfloors+1;
    bet{i} = [(be(i,1)/wx)^2  0 ; 0  (be(i,2)/wy)^2];
end
Beta = blkdiag(bet{:});

Qt = blkdiag(a*Alpha, b*Beta);
Rt = 1e-12 * eye(nu);
Nt = zeros (nout, nu);
% LQ design parameters. See the paper for the
% details.

try
    Kc = lqry(sys_LQ, Qt, Rt, Nt);
    Kc_err = 0;
catch
    disp(' **** ERROR : Kc cannot be computed. Zero Kc is used. ****');
    Kc_err = 1;
    Kc = zeros(nu, nout);
end
% LQ controller gain.

%%%%%%%%%%%       KALMAN FILTER DESIGN      %%%%%%%%%%%%%%%%%%%

temp_sys_Kalman = ss(sys_Kalman.A, [sys_Kalman.B, sys_Kalman.E],...
    sys_Kalman.Cv, [sys_Kalman.Dv, sys_Kalman.Ev]);

nu = size(sys_Kalman.Dv, 2);
nw = size(sys_Kalman.Ev, 2);
nout = size(sys_Kalman.Dv, 1);
% Size of the controller and the excitation.
% Note that nu = ncontrollers.

KT = [eye(nu),  zeros(nu, nw);  zeros(nw, nu),  Gkt*eye(nw)];
% Transfer function of the Kanai-Tajimi filter.

sys_KT = temp_sys_Kalman * KT;
% Augmented system.

uindex = [1 : nu];  windex = [1 : nw] + nu;
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A_open = sys_KT.a;
B_open = sys_KT(:, uindex).b;
E_open = sys_KT(:, windex).b;

Cv_open = sys_KT.c;
Dv_open = sys_KT(:, uindex).d;
Ev_open = sys_KT(:, windex).d;
% Open loop SS matrices of the augmented system.

A_closed = A_open - B_open * Kc;
B_closed = E_open;
C_closed = Cv_open - Dv_open * Kc;
D_closed = Ev_open;
sys_closed = ss(A_closed, B_closed, C_closed, D_closed);
% Closed loop augmented system.

A_closed_dis = A_closed;
B_closed_dis = B_closed;
C_closed_dis = eye(size(A_closed));
D_closed_dis = zeros(size(B_closed));
sys_closed_dis=ss(A_closed_dis, B_closed_dis, C_closed_dis, D_closed_dis);
% Closed loop augmented system for dissiaptivity computations 
% The outputs are the the states

Qn = eye(nw);
Rn = 1e-4 * diag(  diag( covar(sys_closed, eye(nw))' )  );
Nn = zeros(nw, nout);
% Kalman filter parameters.

[kest, L, junk] = kalman (sys_KT, Qn, Rn, Nn);
rlqg = lqgreg(kest, Kc);
% LQG controller. Here "rlqg" is a SS model
% where the inputs are the measurements and the
% the outputs are the control forces.


